SG
Silvano Garnerone
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
525
h-index:
17
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
21

Genomic instability is an early event driving chromatin reorganization and escape from oncogene-induced senescence

Christos Zampetidis et al.Dec 20, 2020
SUMMARY Oncogene-induced senescence (OIS) is an inherent and important tumor suppressor mechanism. However, if not timely removed via immune surveillance, senescent cells will also present a detrimental side. Although this has mostly been attributed to the senescence-associated-secretory-phenotype (SASP) of these cells, we recently proposed that “escape” from the senescent state represents another unfavorable outcome. Here, we exploit genomic and functional data from a prototypical human epithelial cell model carrying an inducible CDC6 oncogene to identify an early-acquired recurrent chromosomal inversion, which harbors a locus encoding the circadian transcription factor BHLHE40. This inversion alone suffices for BHLHE40 activation upon CDC6 induction and for driving cell cycle re-entry and malignant transformation. In summary, we now provide strong evidence in support of genomic instability underlying “escape” from oncogene-induced senescence. HIGHLIGHTS Oncogene driven error-prone repair produces early genetic lesions allowing escape from senescence Cells escaping oncogene-induced senescence display mutational signatures observed in cancer patients A single recurrent inversion harboring a circadian TF gene suffices for bypassing oncogene-induced senescence Chromatin loop and compartment remodeling support the “escape” transcriptional program
21
Citation2
0
Save
0

Modelling double strand break susceptibility to interrogate structural variation in cancer

Tracy Ballinger et al.Oct 13, 2018
Structural variants (SVs) are known to play important roles in a variety of cancers, but their origins and functional consequences are still poorly understood. Many SVs are thought to emerge via errors in the repair processes following DNA double strand breaks (DSBs) and previous studies have experimentally measured DSB frequencies across the genome in cell lines. Using these data we derive the first quantitative genome-wide models of DSB susceptibility, based upon underlying chromatin and sequence features. These models are accurate and provide novel insights into the mutational mechanisms generating DSBs. Models trained in one cell type can be successfully applied to others, but a substantial proportion of DSBs appear to reflect cell type specific processes. Using model predictions as a proxy for susceptibility to DSBs in tumours, many SV enriched regions appear to be poorly explained by selectively neutral mutational bias alone. A substantial number of these regions show unexpectedly high SV breakpoint frequencies given their predicted susceptibility to mutation, and are therefore credible targets of positive selection in tumours. These putatively positively selected SV hotspots are enriched for genes previously shown to be oncogenic. In contrast, several hundred regions across the genome show unexpectedly low levels of SVs, given their relatively high susceptibility to mutation. These novel "coldspot" regions appear to be subject to purifying selection in tumours and are enriched for active promoters and enhancers. We conclude that models of DSB susceptibility offer a rigorous approach to the inference of SVs putatively subject to selection in tumours.