CH
Chuixiu Huang
Author with expertise in Chiral Separation in Chromatography
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
0
h-index:
26
/
i10-index:
45
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Rational analysis of data from LC-MS/MS: new insights in acylcarnitines as biomarkers for brain disorders or neurotoxicity

Li Chen et al.Aug 22, 2024
Objective LC-MS/MS-based metabolomics is an important tool for studying disease-related biomarkers. Conventionally, different strategies have been used to screen biomarkers. However, many studies for biomarker screening by different strategies have ignored the dose-response relationship between the biomarker level and exposure level, and no relevant studies have described and compared different strategies in detail. Phenobarbital (PHB) which belongs to the barbiturates, was selected as the typical representative of neurotoxins. Acylcarnitines have been promising candidates for diagnostic biomarkers for several neurological disorders and neurotoxicity. In this work, we aimed to use an acute PHB poisoning animal model to clarify PHB poisoning effects on plasma and brain acylcarnitine changes and how to rationally analyze data from LC-MS/MS. Methods The acylcarnitine profiles in plasma and brain regions in an actuate PHB poisoning animal model were utilized. The dose-response relationship between plasma PHB and carnitine and acylcarnitines (CARs) in plasma and brain were assessed by the variance analysis trend test and Spearman’s rank correlation test. In different strategies, principal component analysis (PCA) and partial least squares discriminant analysis (OPLS-DA) screened the differential CARs, variable importance plots (VIPs) were utilized to select putative biomarkers for PHB-induced toxicity, and receiver operating characteristic (ROC) curve analysis then illustrated the reliability of biomarkers. Results Under the first strategy, 14 potential toxicity biomarkers were obtained including eight downregulated CARs with AUC &gt;0.8. Under the second strategy, 11 potential toxicity biomarkers were obtained containing five downregulated CARs with AUC &gt;0.8. Only when the dose-response relationship was fully considered, different strategies screen for the same biomarkers (plasma acetyl-carnitine (C2) and plasma decanoyl-carnitine (C10)), which indicated plasma acylcarnitines might serve as toxicity biomarkers. In addition, the plasma CAR level changes showed differences from brain CAR level changes, and correlations between plasma CARs and their brain counterparts were weak. Conclusion We found that plasma C2 and C10 might serve as toxicity biomarkers for PHB poisoning disorders, and PHB poisoning effects on changes in plasma CARs may not be fully representative of changes in brain CARs.
4

KARS mediates intra-translational deposition ofN6-acetyl-L-lysine in nascent proteins to contribute the acetylome in cells

Dingyuan Guo et al.Jan 8, 2023
Abstract N 6 -acetyl- L -lysine residue is abundant in dietary protein but less is known about its potential influences on the diet-consumers. We herein report that KARS mediates intra- translational deposition of diet-derived N 6 -acetyl- L -lysine in nascent proteins to contribute the acetylome in cells. Acetylated dietary protein is a direct source of N 6 -acetyl- L -lysine that can widely and substantially contribute the acetylome in multiple organs of mice. By analyzing the co-crystal structure of Lysyl-tRNA synthetase (KARS) in complex with N 6 - acetyl- L -lysyl-AMP and pyrophosphate, together with in vitro biochemical assays, we learned that KARS can utilize N 6 -acetyl- L -lysine to produce N 6 -acetyl- L -lysyl-AMP and transfers the N 6 -acetyl- L -lysyl-moiety to lysine cognate tRNA to generate N 6 -acetyl- L - lysyl-tRNA, which introduces N 6 -acetyl- L -lysine into growing nascent polypeptide and intra-translationally results in protein acetylation. This undocumented protein modification mechanism is inherently different from post-translational modification (PTM) and termed as intra-translational modification (ITM). ITM can functionally mimic PTM mechanisms to deposit acetylation in histones to decondense chromatin. It can also modify PTM- inaccessible regions that are buried inside and functionally important to proteins. ITM is expected to extend the repertoire of acetylome and improve our understandings in protein modification modes in cells.