JG
Jürgen Gadau
Author with expertise in Genomic Insights into Social Insects and Symbiosis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(73% Open Access)
Cited by:
2,182
h-index:
38
/
i10-index:
69
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The genomes of two key bumblebee species with primitive eusocial organization

Ben Sadd et al.Apr 13, 2015
The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats.We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits.These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.
0
Citation367
0
Save
0

Draft genome of the red harvester ant Pogonomyrmex barbatus

Chris Smith et al.Jan 31, 2011
We report the draft genome sequence of the red harvester ant, Pogonomyrmex barbatus . The genome was sequenced using 454 pyrosequencing, and the current assembly and annotation were completed in less than 1 y. Analyses of conserved gene groups (more than 1,200 manually annotated genes to date) suggest a high-quality assembly and annotation comparable to recently sequenced insect genomes using Sanger sequencing. The red harvester ant is a model for studying reproductive division of labor, phenotypic plasticity, and sociogenomics. Although the genome of P. barbatus is similar to other sequenced hymenopterans ( Apis mellifera and Nasonia vitripennis ) in GC content and compositional organization, and possesses a complete CpG methylation toolkit, its predicted genomic CpG content differs markedly from the other hymenopterans. Gene networks involved in generating key differences between the queen and worker castes (e.g., wings and ovaries) show signatures of increased methylation and suggest that ants and bees may have independently co-opted the same gene regulatory mechanisms for reproductive division of labor. Gene family expansions (e.g., 344 functional odorant receptors) and pseudogene accumulation in chemoreception and P450 genes compared with A. mellifera and N. vitripennis are consistent with major life-history changes during the adaptive radiation of Pogonomyrmex spp., perhaps in parallel with the development of the North American deserts.
0
Citation257
0
Save
0

The Genome Sequence of the Leaf-Cutter Ant Atta cephalotes Reveals Insights into Its Obligate Symbiotic Lifestyle

Garret Suen et al.Feb 10, 2011
Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host–microbe symbioses.
0
Citation254
0
Save
0

Social insect genomes exhibit dramatic evolution in gene composition and regulation while preserving regulatory features linked to sociality

Daniel Simola et al.May 1, 2013
Genomes of eusocial insects code for dramatic examples of phenotypic plasticity and social organization. We compared the genomes of seven ants, the honeybee, and various solitary insects to examine whether eusocial lineages share distinct features of genomic organization. Each ant lineage contains ∼4000 novel genes, but only 64 of these genes are conserved among all seven ants. Many gene families have been expanded in ants, notably those involved in chemical communication (e.g., desaturases and odorant receptors). Alignment of the ant genomes revealed reduced purifying selection compared with Drosophila without significantly reduced synteny. Correspondingly, ant genomes exhibit dramatic divergence of noncoding regulatory elements; however, extant conserved regions are enriched for novel noncoding RNAs and transcription factor-binding sites. Comparison of orthologous gene promoters between eusocial and solitary species revealed significant regulatory evolution in both cis (e.g., Creb) and trans (e.g., fork head) for nearly 2000 genes, many of which exhibit phenotypic plasticity. Our results emphasize that genomic changes can occur remarkably fast in ants, because two recently diverged leaf-cutter ant species exhibit faster accumulation of species-specific genes and greater divergence in regulatory elements compared with other ants or Drosophila. Thus, while the "socio-genomes" of ants and the honeybee are broadly characterized by a pervasive pattern of divergence in gene composition and regulation, they preserve lineage-specific regulatory features linked to eusociality. We propose that changes in gene regulation played a key role in the origins of insect eusociality, whereas changes in gene composition were more relevant for lineage-specific eusocial adaptations.
0
Citation236
0
Save
36

Evolutionary genomics of socially polymorphic populations ofPogonomyrmex californicus

Mohammed Errbii et al.Mar 22, 2021
Abstract Social insects vary considerably in their social organization both between and within species. In the California harvester ant, Pogonomyrmex californicus (Buckley 1867), colonies are commonly founded and headed by a single queen (haplometrosis, primary monogyny). However, in some populations in California (USA), unrelated queens cooperate not only during founding (pleometrosis) but throughout the life of the colony (primary polygyny). The genetic architecture and evolutionary dynamics of this complex social niche polymorphism (haplometrosis vs pleometrosis) have remained unknown. Here, we provide a first analysis of its genomic basis and evolutionary history using population genomics comparing individuals from a haplometrotic population to those from a pleometrotic population. We discovered a recently evolved (< 200 k years), 8 Mb non-recombining region segregating with the observed social niche polymorphism. This region shares several characteristics with supergenes underlying social polymorphisms in other socially polymorphic ant species. However, we also find remarkable differences from previously described social supergenes. Particularly, four additional genomic regions not in linkage with the supergene show signatures of a selective sweep in the pleometrotic population. Within these regions, we find for example genes crucial for epigenetic regulation via histone modification ( chameau ) and DNA methylation ( Dnmt1 ). These results suggest that social morph in this species is a polygenic trait involving a potential young supergene. Further studies targeting haplo- and pleometrotic individuals from a single population are however required to conclusively resolve whether these genetic differences underlie the alternative social phenotypes or have emerged through genetic drift.
36
Citation3
0
Save
1

Blochmanniaendosymbionts reduce brood rearing success in a carpenter ant (Camponotussp.)

Anika Preuss et al.Dec 2, 2022
Abstract All ants of the species rich genus Camponotus (‘carpenter ants’) possess the obligate intracellular bacterial mutualist Blochmannia . We tested the relevance of the endosymbiont Blochmannia for offspring rearing using cross-fostering experiments between Camponotus sp. colonies and subcolonies (worker groups), which were either treated with antibiotics to remove Blochmannia or untreated. Our antibiotic treatment reduced the level of Blochmannia endosymbionts in eggs, larvae and workers significantly. Corroborating previous results, we found that eggs from treated colonies had a significantly reduced probability to develop into larvae and almost zero probability to become adults. Surprisingly, subcolonies treated with antibiotics had a significantly higher success in raising their own and foreign eggs from treated and untreated colonies than untreated subcolonies. This might indicate that the Blochmannia symbiosis entails significant costs for the host in terms of brood rearing, i.e., symbiont-free workers are more successful in brood rearing than untreated workers. If confirmed, this would be a rare case where the costs of a symbiosis can be empirically measured and quantified. Alternatively, the antibiotic treatment increased as a side effect the brood rearing effort of workers leading to the differences in brood rearing success of treated workers. But even if that would be the case, it still indicates that workers that have either lost or have a significantly reduced number of endosymbionts can still raise brood from antibiotic-treated and untreated colonies better than untreated workers. Thus Blochmannia , although crucial for brood development, may reduce the amount of brood a colony can raise.
0

Functional insights from the GC-poor genomes of two aphid parasitoids, Aphidius ervi and Lysiphlebus fabarum

Alice Dennis et al.Nov 14, 2019
Background: Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biocontrol, and infecting aphids requires overcoming both aphid defenses and their defensive endosymbionts. Results: We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp), highly syntenic, and the most AT-rich reported thus far for any arthropod (GC content: 25.8% and 23.8%). This nucleotide bias is accompanied by skewed codon usage, and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and age-specific energy demands. We identify expansions of F-box/Leucine-rich-repeat proteins, suggesting that diversification in this gene family may be associated with their broad host range or with countering defenses from aphids' endosymbionts. The absence of some immune genes (Toll and Imd pathways) resembles similar losses in their aphid hosts, highlighting the potential impact of symbiosis on both aphids and their parasitoids. Conclusions: These findings are of fundamental interest for insect evolution and beyond. This will provide a strong foundation for further functional studies including coevolution with respect to their hosts, the basis of successful infection, and biocontrol. Both genomes are available at https://bipaa.genouest.org.
Load More