BM
Bortolo Mognetti
Author with expertise in Applications of Quantum Dots in Nanotechnology
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
4
h-index:
23
/
i10-index:
43
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Unfolding of the chromatin fiber driven by overexpression of bridging factors

Isha Malhotra et al.Jul 30, 2020
Abstract Nuclear molecules control the functional properties of the chromatin fiber by shaping its morphological properties. The biophysical mechanisms controlling how bridging molecules compactify the chromatin are a matter of debate. On the one side, bridging molecules could cross-link faraway sites and fold the fiber through the formation of loops. Interacting bridging molecules could also mediate long-range attractions by first tagging different locations of the fiber and then undergoing microphase separation. Using a coarse-grained model and Monte Carlo simulations, we study the conditions leading to compact configurations both for interacting and non-interacting bridging molecules. In the second case, we report on an unfolding transition at high densities of the bridging molecules. We clarify how this transition, which disappears for interacting bridging molecules, is universal and controlled by entropic terms. In general, chains are more compact in the case of interacting bridging molecules since, in this case, interactions are not valence-limited. However, this result is conditional on the ability of our simulation methodology to relax the system towards its ground state. In particular, we clarify how, unless using reaction dynamics that change the length of a loop in a single step, the system is prone to remain trapped in metastable, compact configurations featuring long loops.
1

The sliding motility of the bacilliform virions of Influenza A Viruses

Laurie Stevens et al.Mar 22, 2023
Influenza A virus (IAV) infection relies on the action of the hemagglutinin (HA) and neuraminidase (NA) membrane proteins. The HA ligands anchor the IAV virion to the cell’s surface by binding the sialic acid (SA) present on the host’s receptors while NA is an enzyme capable of cleaving the SA from the extracellular environment. It is believed that the activity of NA ligands increases the motility of the virions favoring the propagation of the infection. In this work, we develop a numerical framework to study the dynamics of a virion moving across the cell surface for timescales much bigger than the typical ligand-receptor reaction times. We find that the rates controlling the ligand-receptor reactions and the maximal distance at which a pair of ligand-receptor molecules can interact greatly affect the motility of the virions. We also report on how different ways of organizing the two types of ligands on the virions’ surface result in different types of motion that we rationalize using general principles. In particular, we show how the emerging motility of the virion is less sensitive to the rate controlling the enzymatic activity when NA ligands are clustered. These results help to assess how variations in the biochemical properties of the ligand–receptor interactions (as observed across different IAV subtypes) affect the dynamics of the virions at the cell surface.