AI
Akira Itoh
Author with expertise in Biodiversity Conservation and Ecosystem Management
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(89% Open Access)
Cited by:
3,025
h-index:
46
/
i10-index:
108
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Elevated Levels of Oxidized Low Density Lipoprotein Show a Positive Relationship With the Severity of Acute Coronary Syndromes

Shoichi Ehara et al.Apr 17, 2001
Background —There is accumulating data that acute coronary syndromes relate to recent onset activation of inflammation affecting atherosclerotic plaques. Increased blood levels of oxidized low density lipoprotein (ox-LDL) could play a role in these circumstances. Methods and Results —Ox-LDL levels were measured in 135 patients with acute myocardial infarction (AMI; n=45), unstable angina pectoris (UAP; n=45), and stable angina pectoris (SAP; n=45) and in 46 control subjects using a sandwich ELISA method. In addition, 33 atherectomy specimens obtained from a different cohort of patients with SAP (n=10) and UAP (n=23) were studied immunohistochemically for ox-LDL. In AMI patients, ox-LDL levels were significantly higher than in patients with UAP ( P <0.0005) or SAP ( P <0.0001) or in controls ( P <0.0001) (AMI, 1.95±1.42 ng/5 μg LDL protein; UAP, 1.19±0.74 ng/5 μg LDL protein; SAP, 0.89±0.48 ng/5 μg LDL protein; control, 0.58±0.23 ng/5 μg LDL protein). Serum levels of total, HDL, and LDL cholesterol did not differ among these patient groups. In the atherectomy specimens, the surface area containing ox-LDL–positive macrophages was significantly higher in patients with UAP than in those with SAP ( P <0.0001). Conclusions —This study demonstrates that ox-LDL levels show a significant positive correlation with the severity of acute coronary syndromes and that the more severe lesions also contain a significantly higher percentage of ox-LDL–positive macrophages. These observations suggest that increased levels of ox-LDL relate to plaque instability in human coronary atherosclerotic lesions.
0

Neutrophil Infiltration of Culprit Lesions in Acute Coronary Syndromes

Takahiko Naruko et al.Dec 2, 2002
Background— Neutrophils in unstable atherosclerotic lesions have not received much consideration, despite accumulating evidence suggesting a link between systemic inflammation and acute coronary syndromes. Methods and Results— Coronary artery segments were obtained at autopsy from 13 patients with acute myocardial infarction (AMI); 8 had a ruptured and 5 an eroded plaque. Patients (n=45) who had died of noncardiovascular diseases served as reference. Atherectomy specimens were obtained from 35 patients with stable angina pectoris (SAP) and from 32 patients with unstable angina pectoris (UAP). Antibodies against CD66b, elastase, myeloperoxidase, and CD11b identified neutrophils; CD10 identified neutral endopeptidase (NEP). CD66b-positive and NEP-positive neutrophils were counted and expressed as a number per square millimeter of tissue. All specimens with plaque rupture or erosion showed distinct neutrophil infiltration; the number did not differ between ruptured and eroded plaques. However, the number of NEP-positive neutrophils was significantly higher ( P <0.0001) in ruptured plaques than in eroded plaques. UAP patients showed neutrophils in 14 of 32 culprit lesions; in SAP only 2 of 35 lesions contained neutrophils. The number of neutrophils and NEP-positive cells in patients with UAP was significantly higher (neutrophils, P <0.0005; NEP-positive cells, P <0.005) than in patients with SAP. Conclusions— The observations suggest that neutrophil infiltration is actively associated with acute coronary events. The high number of NEP-positive neutrophils in ruptured plaques, compared with eroded plaques, may reflect differences in the underlying pathophysiological mechanisms.
0

Global importance of large‐diameter trees

James Lutz et al.May 8, 2018
Abstract Aim To examine the contribution of large‐diameter trees to biomass, stand structure, and species richness across forest biomes. Location Global. Time period Early 21st century. Major taxa studied Woody plants. Methods We examined the contribution of large trees to forest density, richness and biomass using a global network of 48 large (from 2 to 60 ha) forest plots representing 5,601,473 stems across 9,298 species and 210 plant families. This contribution was assessed using three metrics: the largest 1% of trees ≥ 1 cm diameter at breast height (DBH), all trees ≥ 60 cm DBH, and those rank‐ordered largest trees that cumulatively comprise 50% of forest biomass. Results Averaged across these 48 forest plots, the largest 1% of trees ≥ 1 cm DBH comprised 50% of aboveground live biomass, with hectare‐scale standard deviation of 26%. Trees ≥ 60 cm DBH comprised 41% of aboveground live tree biomass. The size of the largest trees correlated with total forest biomass ( r 2 = .62, p < .001). Large‐diameter trees in high biomass forests represented far fewer species relative to overall forest richness ( r 2 = .45, p < .001). Forests with more diverse large‐diameter tree communities were comprised of smaller trees ( r 2 = .33, p < .001). Lower large‐diameter richness was associated with large‐diameter trees being individuals of more common species ( r 2 = .17, p = .002). The concentration of biomass in the largest 1% of trees declined with increasing absolute latitude ( r 2 = .46, p < .001), as did forest density ( r 2 = .31, p < .001). Forest structural complexity increased with increasing absolute latitude ( r 2 = .26, p < .001). Main conclusions Because large‐diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling. We recommend managing forests for conservation of existing large‐diameter trees or those that can soon reach large diameters as a simple way to conserve and potentially enhance ecosystem services.
0
Paper
Citation397
0
Save
0

Scale‐dependent relationships between tree species richness and ecosystem function in forests

Ryan Chisholm et al.Aug 28, 2013
Summary The relationship between species richness and ecosystem function, as measured by productivity or biomass, is of long‐standing theoretical and practical interest in ecology. This is especially true for forests, which represent a majority of global biomass, productivity and biodiversity. Here, we conduct an analysis of relationships between tree species richness, biomass and productivity in 25 forest plots of area 8–50 ha from across the world. The data were collected using standardized protocols, obviating the need to correct for methodological differences that plague many studies on this topic. We found that at very small spatial grains (0.04 ha) species richness was generally positively related to productivity and biomass within plots, with a doubling of species richness corresponding to an average 48% increase in productivity and 53% increase in biomass. At larger spatial grains (0.25 ha, 1 ha), results were mixed, with negative relationships becoming more common. The results were qualitatively similar but much weaker when we controlled for stem density: at the 0.04 ha spatial grain, a doubling of species richness corresponded to a 5% increase in productivity and 7% increase in biomass. Productivity and biomass were themselves almost always positively related at all spatial grains. Synthesis . This is the first cross‐site study of the effect of tree species richness on forest biomass and productivity that systematically varies spatial grain within a controlled methodology. The scale‐dependent results are consistent with theoretical models in which sampling effects and niche complementarity dominate at small scales, while environmental gradients drive patterns at large scales. Our study shows that the relationship of tree species richness with biomass and productivity changes qualitatively when moving from scales typical of forest surveys (0.04 ha) to slightly larger scales (0.25 and 1 ha). This needs to be recognized in forest conservation policy and management.
0
Paper
Citation311
0
Save
1

Latitudinal patterns in stabilizing density dependence of forest communities

Lisa Hülsmann et al.Feb 28, 2024
Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10-12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.
1
Paper
Citation4
0
Save
17

Major axes of variation in tree demography across global forests

Melina Leite et al.Jan 13, 2023
Abstract The future trajectory of global forests is closely intertwined with tree demography, and a major fundamental goal in ecology is to understand the key mechanisms governing spatial-temporal patterns in tree population dynamics. While historical research has made substantial progress in identifying the mechanisms individually, their relative importance among forests remains unclear mainly due to practical limitations. One approach is to group mechanisms according to their shared effects on the variability of tree vital rates and to quantify patterns therein. We developed a conceptual and statistical framework (variance partitioning of Bayesian multilevel models) that attributes the variability in tree growth, mortality, and recruitment to variation in species, space, and time, and their interactions, categories we refer to as organising principles (OPs). We applied the framework to data from 21 forest plots covering more than 2.9 million trees of approximately 6,500 species. We found that differences among species, the species OP, proved a major source of variability in tree vital rates, explaining 28-33% of demographic variance alone, and in interaction with space 14-17%, totalling 40-43%. The average variability among species declined with species richness across forests, indicating that diverse forests featured smaller interspecific differences in vital rates supporting the theory that the range of vital rates is similar across global forests. Decomposing the variance in vital rates into the proposed OPs showed that taxonomy is crucial to predicting and understanding tree demography on large forest plots. A focus on how variance is organized in forests can facilitate the construction of more targeted models with clearer expectations of which covariates might drive a vital rate. This study therefore highlights the most promising avenues for future research, both in terms of understanding the relative contributions of groups of mechanisms to forest demography and diversity, and for improving projections of forest ecosystems.