IS
I‐Fang Sun
Author with expertise in Biodiversity Conservation and Ecosystem Management
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(82% Open Access)
Cited by:
2,774
h-index:
40
/
i10-index:
70
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Plant functional traits have globally consistent effects on competition

Georges Künstler et al.Dec 23, 2015
Data from millions of trees in thousands of locations are used to show that certain key traits affect competitive ability in predictable ways, and that there are trade-offs between traits that favour growth with and without competition. The properties of plants affect their physiology in predictable and consistent ways, but it is not clear if this can be extended to effects on ecological competitiveness. Georges Kunstler et al. assemble data from three million trees, 140,000 forest growth plots, and many vegetation types worldwide to show that certain key traits affect competitive ability in predictable ways, and that there are trade-offs between traits that favour growth with, and without, competition. Elsewhere in this issue of Nature, Sandra Díaz et al. analyse a comprehensive database mapping worldwide variation in six traits critical to growth, survival and reproduction of vascular plants and arrive at a detailed quantitative global picture of plant functional diversity. Phenotypic traits and their associated trade-offs have been shown to have globally consistent effects on individual plant physiological functions1,2,3, but how these effects scale up to influence competition, a key driver of community assembly in terrestrial vegetation, has remained unclear4. Here we use growth data from more than 3 million trees in over 140,000 plots across the world to show how three key functional traits—wood density, specific leaf area and maximum height—consistently influence competitive interactions. Fast maximum growth of a species was correlated negatively with its wood density in all biomes, and positively with its specific leaf area in most biomes. Low wood density was also correlated with a low ability to tolerate competition and a low competitive effect on neighbours, while high specific leaf area was correlated with a low competitive effect. Thus, traits generate trade-offs between performance with competition versus performance without competition, a fundamental ingredient in the classical hypothesis that the coexistence of plant species is enabled via differentiation in their successional strategies5. Competition within species was stronger than between species, but an increase in trait dissimilarity between species had little influence in weakening competition. No benefit of dissimilarity was detected for specific leaf area or wood density, and only a weak benefit for maximum height. Our trait-based approach to modelling competition makes generalization possible across the forest ecosystems of the world and their highly diverse species composition.
0
Paper
Citation799
0
Save
0

Partitioning beta diversity in a subtropical broad‐leaved forest of China

Pierre Legendre et al.Feb 26, 2009
The classical environmental control model assumes that species distribution is determined by the spatial variation of underlying habitat conditions. This niche‐based model has recently been challenged by the neutral theory of biodiversity which assumes that ecological drift is a key process regulating species coexistence. Understanding the mechanisms that maintain biodiversity in communities critically depends on our ability to decompose the variation of diversity into the contributions of different processes affecting it. Here we investigated the effects of pure habitat, pure spatial, and spatially structured habitat processes on the distributions of species richness and species composition in a recently established 24‐ha stem‐mapping plot in the subtropical evergreen broad‐leaved forest of Gutianshan National Nature Reserve in East China. We used the new spatial analysis method of principal coordinates of neighbor matrices (PCNM) to disentangle the contributions of these processes. The results showed that (1) habitat and space jointly explained ∼53% of the variation in richness and ∼65% of the variation in species composition, depending on the scale (sampling unit size); (2) tree diversity (richness and composition) in the Gutianshan forest was dominantly controlled by spatially structured habitat (24%) and habitat‐independent spatial component (29%); the spatially independent habitat contributed a negligible effect (6%); (3) distributions of richness and species composition were strongly affected by altitude and terrain convexity, while the effects of slope and aspect were weak; (4) the spatial distribution of diversity in the forest was dominated by broad‐scaled spatial variation; (5) environmental control on the one hand and unexplained spatial variation on the other (unmeasured environmental variables and neutral processes) corresponded to spatial structures with different scales in the Gutianshan forest plot; and (6) five habitat types were recognized; a few species were statistically significant indicators of three of these habitats, whereas two habitats had no significant indicator species. The results suggest that the diversity of the forest is equally governed by environmental control (30%) and neutral processes (29%). In the fine‐scale analysis (10 × 10 m cells), neutral processes dominated (43%) over environmental control (20%).
0
Paper
Citation601
0
Save
0

Global importance of large‐diameter trees

James Lutz et al.May 8, 2018
Abstract Aim To examine the contribution of large‐diameter trees to biomass, stand structure, and species richness across forest biomes. Location Global. Time period Early 21st century. Major taxa studied Woody plants. Methods We examined the contribution of large trees to forest density, richness and biomass using a global network of 48 large (from 2 to 60 ha) forest plots representing 5,601,473 stems across 9,298 species and 210 plant families. This contribution was assessed using three metrics: the largest 1% of trees ≥ 1 cm diameter at breast height (DBH), all trees ≥ 60 cm DBH, and those rank‐ordered largest trees that cumulatively comprise 50% of forest biomass. Results Averaged across these 48 forest plots, the largest 1% of trees ≥ 1 cm DBH comprised 50% of aboveground live biomass, with hectare‐scale standard deviation of 26%. Trees ≥ 60 cm DBH comprised 41% of aboveground live tree biomass. The size of the largest trees correlated with total forest biomass ( r 2 = .62, p < .001). Large‐diameter trees in high biomass forests represented far fewer species relative to overall forest richness ( r 2 = .45, p < .001). Forests with more diverse large‐diameter tree communities were comprised of smaller trees ( r 2 = .33, p < .001). Lower large‐diameter richness was associated with large‐diameter trees being individuals of more common species ( r 2 = .17, p = .002). The concentration of biomass in the largest 1% of trees declined with increasing absolute latitude ( r 2 = .46, p < .001), as did forest density ( r 2 = .31, p < .001). Forest structural complexity increased with increasing absolute latitude ( r 2 = .26, p < .001). Main conclusions Because large‐diameter trees constitute roughly half of the mature forest biomass worldwide, their dynamics and sensitivities to environmental change represent potentially large controls on global forest carbon cycling. We recommend managing forests for conservation of existing large‐diameter trees or those that can soon reach large diameters as a simple way to conserve and potentially enhance ecosystem services.
0
Paper
Citation397
0
Save
0

Scale‐dependent relationships between tree species richness and ecosystem function in forests

Ryan Chisholm et al.Aug 28, 2013
Summary The relationship between species richness and ecosystem function, as measured by productivity or biomass, is of long‐standing theoretical and practical interest in ecology. This is especially true for forests, which represent a majority of global biomass, productivity and biodiversity. Here, we conduct an analysis of relationships between tree species richness, biomass and productivity in 25 forest plots of area 8–50 ha from across the world. The data were collected using standardized protocols, obviating the need to correct for methodological differences that plague many studies on this topic. We found that at very small spatial grains (0.04 ha) species richness was generally positively related to productivity and biomass within plots, with a doubling of species richness corresponding to an average 48% increase in productivity and 53% increase in biomass. At larger spatial grains (0.25 ha, 1 ha), results were mixed, with negative relationships becoming more common. The results were qualitatively similar but much weaker when we controlled for stem density: at the 0.04 ha spatial grain, a doubling of species richness corresponded to a 5% increase in productivity and 7% increase in biomass. Productivity and biomass were themselves almost always positively related at all spatial grains. Synthesis . This is the first cross‐site study of the effect of tree species richness on forest biomass and productivity that systematically varies spatial grain within a controlled methodology. The scale‐dependent results are consistent with theoretical models in which sampling effects and niche complementarity dominate at small scales, while environmental gradients drive patterns at large scales. Our study shows that the relationship of tree species richness with biomass and productivity changes qualitatively when moving from scales typical of forest surveys (0.04 ha) to slightly larger scales (0.25 and 1 ha). This needs to be recognized in forest conservation policy and management.
0
Paper
Citation311
0
Save
1

Latitudinal patterns in stabilizing density dependence of forest communities

Lisa Hülsmann et al.Feb 28, 2024
Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10-12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.
1
Paper
Citation4
0
Save
3

Species packing and the latitudinal gradient in beta-diversity

Ke Cao et al.Jul 15, 2020
Abstract The decline in species richness at higher latitudes is among the most fundamental patterns in ecology. Whether changes in species composition across space (beta-diversity) contribute to this gradient of overall species richness (gamma-diversity) remains hotly debated. Previous studies that failed to resolve the issue suffered from a well-known tendency for small samples in areas with high gamma-diversity to have inflated measures of beta-diversity. Here, we provide here a novel analytical test, using beta-diversity metrics that correct the gamma-diversity and sampling biases, to compare beta-diversity and species packing across a latitudinal gradient in tree species richness of 21 large forest plots along a large environmental gradient in East Asia. We demonstrate that after accounting for topography and correcting the gamma-diversity bias, tropical forests still have higher beta-diversity than temperate analogs. This suggests that beta-diversity contributes to the latitudinal species richness gradient as a component of gamma-diversity. Moreover, both niche specialization and niche marginality (a measure of niche spacing along an environmental gradient) also increase towards the equator, after controlling for the effect of topographic heterogeneity. This supports the joint importance of tighter species packing and larger niche space in tropical forests while also demonstrating the importance of local processes in controlling beta-diversity.
3
Paper
Citation4
0
Save
0

Assessing the spatial scale of synchrony in forest tree population dynamics

Ryan Chisholm et al.Nov 1, 2024
Populations of forest trees exhibit large temporal fluctuations, but little is known about the synchrony of these fluctuations across space, including their sign, magnitude, causes and characteristic scales. These have important implications for metapopulation persistence and theoretical community ecology. Using data from permanent forest plots spanning local, regional and global spatial scales, we measured spatial synchrony in tree population growth rates over sub-decadal and decadal timescales and explored the relationship of synchrony to geographical distance. Synchrony was high at local scales of less than 1 km, with estimated Pearson correlations of approximately 0.6–0.8 between species’ population growth rates across pairs of quadrats. Synchrony decayed by approximately 17–44% with each order of magnitude increase in distance but was still detectably positive at distances of 100 km and beyond. Dispersal cannot explain observed large-scale synchrony because typical seed dispersal distances (<100 m) are far too short to couple the dynamics of distant forests on decadal timescales. We attribute the observed synchrony in forest dynamics primarily to the effect of spatially synchronous environmental drivers (the Moran effect), in particular climate, although pests, pathogens and anthropogenic drivers may play a role for some species.
1

Latitudinal scaling of aggregation with abundance and its consequences for coexistence in species rich forests

Thorsten Wiegand et al.May 21, 2023
Abstract The search for simple principles underlying the complex spatial structure and dynamics of plant communities is a long-standing challenge in ecology 1-6 . In particular, the relationship between the spatial distribution of plants and species coexistence is challenging to resolve in species-rich communities 7-9 . Analysing the spatial patterns of tree species in 21 large forest plots, we find that rare species tend to be more spatially aggregated than common species, and a latitudinal gradient in the strength of this negative correlations that increases from tropical to temperate forests. Our analysis suggests that latitudinal gradients in animal seed dispersal 10 and mycorrhizal associations 11,12,13 may jointly generate this intriguing pattern. To assess the consequences of negative aggregation-abundance correlations for species coexistence, we present here a framework to incorporate the observed spatial patterns into population models 8 along with an analytical solution for the local extinction risk 14 of species invading from low abundances in dependence of spatial structure, demographic parameters, and immigration. For example, the stabilizing effect of the observed spatial patterns reduced the local extinction risk of species when rare almost by a factor of two. Our approach opens up new avenues for integrating observed spatial patterns into mathematical theory, and our findings demonstrate that spatial patterns, such as species aggregation and segregation, can contribute substantially to coexistence in species-rich communities. This underscores the need to understand the interactions between multiple ecological processes and spatial patterns in greater detail.
Load More