SM
Salah Mestikawy
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(65% Open Access)
Cited by:
4,555
h-index:
54
/
i10-index:
107
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Third Vesicular Glutamate Transporter Expressed by Cholinergic and Serotoninergic Neurons

Christelle Gras et al.Jul 1, 2002
Two proteins previously known as Na(+)-dependent phosphate transporters have been identified recently as vesicular glutamate transporters (VGLUT1 and VGLUT2). Together, VGLUT1 and VGLUT2 are operating at most central glutamatergic synapses. In this study, we characterized a third vesicular glutamate transporter (VGLUT3), highly homologous to VGLUT1 and VGLUT2. Vesicles isolated from endocrine cells expressing recombinant VGLUT3 accumulated l-glutamate with bioenergetic and pharmacological characteristics similar, but not identical, to those displayed by the type-1 and type-2 isoforms. Interestingly, the distribution of VGLUT3 mRNA was restricted to a small number of neurons scattered in the striatum, hippocampus, cerebral cortex, and raphe nuclei, in contrast to VGLUT1 and VGLUT2 transcripts, which are massively expressed in cortical and deep structures of the brain, respectively. At the ultrastructural level, VGLUT3 immunoreactivity was concentrated over synaptic vesicle clusters present in nerve endings forming asymmetrical as well as symmetrical synapses. Finally, VGLUT3-positive neurons of the striatum and raphe nuclei were shown to coexpress acetylcholine and serotonin transporters, respectively. Our study reveals a novel class of glutamatergic nerve terminals and suggests that cholinergic striatal interneurons and serotoninergic neurons from the brainstem may store and release glutamate.
0

Quantitative autoradiography of multiple 5-HT1 receptor subtypes in the brain of control or 5,7-dihydroxytryptamine-treated rats

Daniel Vergé et al.Dec 1, 1986
The distribution of the 2 main types (A and B) of 5-HT1 binding sites in the rat brain was studied by light-microscopic quantitative autoradiography. The 5-HT1A sites were identified using 3H-8-hydroxy-2- (N-dipropylamino)tetralin (3H-8-OH-DPAT) or 3H-5-HT as the ligand. In the latter case, it was shown that 3H-5-HT binding to 5-HT1A sites corresponded to that displaceable by 0.1 microM 8-OH-DPAT or 1 microM spiperone. The “non-5-HT1A” sites labeled by 3H-5-HT in the presence of 0.1 microM 8-OH-DPAT corresponded mainly to 5-HT1B sites. 5-HT1A binding was notably high in limbic regions (dentate gyrus, CA1 and CA3 hippocampal regions, lateral septum, frontal cortex), whereas 5-HT1B binding was particularly concentrated in extrapyramidal areas (caudate nucleus, globus pallidus, substantia nigra). Except in the latter regions, where only one class of 5-HT1 sites was found, both 5-HT1A and 5-HT1B sites existed in all areas examined. The selective degeneration of serotoninergic neurons produced by an intracerebral injection of 5,7- dihydroxytryptamine was associated only with a significant loss of 5- HT1A binding to the dorsal raphe nucleus (-60%) and of 5-HT1B binding to the substantia nigra (-37%). These results are discussed in relation to the possible identity of 5-HT1A and/or 5-HT1B sites with the presynaptic 5-HT autoreceptors controlling nerve impulse flow and neurotransmitter release in serotoninergic neurons.
0

Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain

Mustapha Riad et al.Feb 7, 2000
The 5-HT1A and 5-HT1B receptors of serotonin play important roles as auto- and heteroreceptors controlling the release of serotonin itself and of other neurotransmitters/modulators in the central nervous system (CNS). To determine the precise localization of these receptors, we examined their respective cellular and subcellular distributions in the nucleus raphe dorsalis and hippocampal formation (5-HT1A) and in the globus pallidus and substantia nigra (5-HT1B), using light and electron microscopic immunocytochemistry with specific antibodies. Both immunogold and immunoperoxidase preembedding labelings were achieved. In the nucleus raphe dorsalis, 5-HT1A immunoreactivity was found exclusively on neuronal cell bodies and dendrites, and mostly along extrasynaptic portions of their plasma membrane. After immunogold labeling, the density of membrane-associated 5-HT1A receptors could be estimated to be at least 30–40 times that in the cytoplasm. In the hippocampal formation, the somata as well as dendrites of pyramidal and granule cells displayed 5-HT1A immunoreactivity, which was also prominent on the dendritic spines of pyramidal cells. In both substantia nigra and globus pallidus, 5-HT1B receptors were preferentially associated with the membrane of fine, unmyelinated, preterminal axons, and were not found on axon terminals. A selective localization to the cytoplasm of endothelial cells of microvessels was also observed. Because the 5-HT1A receptors are somatodendritic, they are ideally situated to mediate serotonin effects on neuronal firing, both as auto- and as heteroreceptors. The localization of 5-HT1B receptors to the membrane of preterminal axons suggests that they control transmitter release from nonserotonin as well as serotonin neurons by mediating serotonin effects on axonal conduction. The fact that these two receptor subtypes predominate at extrasynaptic and nonsynaptic sites provides further evidence for diffuse serotonin transmission in the CNS. J. Comp. Neurol. 417:181–194, 2000. ©2000 Wiley-Liss, Inc.
0

[3H]8‐Hydroxy‐2‐(Di‐n‐Propylamino)Tetralin Binding to Pre‐ and Postsynaptic 5‐Hydroxytryptamine Sites in Various Regions of the Rat Brain

M.D. Hall et al.Jun 1, 1985
Abstract: The specific binding of [ 3 H]8‐hydroxy‐2‐(di‐ n ‐propylamino)tetralin ([ 3 H]8‐OH‐DPAT) to 5‐hydroxytryptamine (5‐HT)‐related sites was investigated in several regions of the rat brain. Marked differences were observed in the characteristics of binding to membranes from hippocampus, striatum, and cerebral cortex. Hippocampal sites exhibited the highest affinity ( K D > 2 n M ) followed by the cerebral cortex ( K D > 6 n M ) and the striatum ( K D > 10 n M ). Ascorbic acid inhibited specific [ 3 H]8‐OH‐DPAT binding in all three regions but millimolar concentrations of Ca 2+ , Mg 2+ , and Mn 2+ enhanced specific binding to hippocampal membranes, whereas only Mn 2+ increased it in the cerebral cortex and all three cations inhibited specific binding to striatal membranes. Guanine nucleotides (0.1 m M GDP, GTP) inhibited binding to hippocampal and cortical membranes only. As intracerebral 5,7‐dihydroxytryptamine markedly decreased [ 3 H]8‐OH‐DPAT binding sites in the striatum, but not in the hippocampus, the striatal sites appear to be on serotoninergic afferent fibers. In contrast, in the hippocampus the sites appear to be on postsynaptic 5‐HT target cells, as local injection of kainic acid decreased their density. Both types of sites appear to be present in the cerebral cortex. The postsynaptic hippocampal [ 3 H]8‐OH‐DPAT binding sites are probably identical to the 5‐HT 1A , subsites, but the relationship between the presynaptic binding sites and the presynaptic autoreceptors controlling 5‐HT release deserves further investigation.
0

Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype

Daniel Vergé et al.Jul 1, 1985
Cerebral ischemia due to stroke or cardiac arrest greatly affects daily functioning and the quality of life of patients and has a high socioeconomic impact due to the surge in their prevalence. Advances in the identification of an effective pharmacotherapy to promote neuroprotection and recovery after a cerebral ischemic insult are, however, limited. The serotonin 1A (5-HT1A) receptor has been implicated in the regulation of several brain functions, including mood, emotions, memory, and neuroplasticity, all of which are deleteriously affected by cerebral ischemia.This review focuses on the specific roles and mechanisms of 5-HT1A receptors in neuroprotection in experimental models of cerebral ischemia. We present experimental evidence that 5-HT1A receptor agonists can prevent neuronal damage and promote functional recovery induced by focal and transient global ischemia in rodents. However, indiscriminate activation of pre-and postsynaptic by non-biased 5-HT1A receptor agonists may be a limiting factor in the anti-ischemic clinical efficacy of these compounds since 5-HT1A receptors in different brain regions can mediate diverging or even contradictory responses. Current insights are presented into the ‘biased’ 5-HT1A post-synaptic heteroreceptor agonist NLX-101 (also known as F15599), a compound that preferentially and potently stimulates postsynaptic cortical pyramidal neurons without inhibiting firing of serotoninergic neurons, as a potential strategy providing neuroprotection in cerebral ischemic conditions.
Load More