Abstract Objective The dysregulation of myeloid-derived cell metabolism can drive atherosclerosis. AMP-activated protein kinase (AMPK) controls various aspects of macrophage dynamics and lipid homeostasis, which are important during atherogenesis. Approach and Results We aimed to clarify the role of myeloid-specific AMPK signaling by using LysM-Cre to drive the deletion of both the α1 and α2 catalytic subunits (MacKO), in male and female mice made acutely atherosclerotic by PCSK9-AAV and Western diet-feeding. After 6 weeks of Western diet feeding, half received daily injection of either the AMPK activator, A-769662 or a vehicle control for a further 6 weeks. After 12 weeks, myeloid cell populations were not different between genotype or sex. Similarly, aortic sinus plaque size, lipid staining and necrotic area were not different in male and female MacKO mice compared to their littermate floxed controls. Moreover, therapeutic intervention with A-769662 had no effect. There were no differences in the amount of circulating total cholesterol or triglyceride, and only minor differences in the levels of inflammatory cytokines between groups. Finally, CD68+ area or markers of autophagy showed no effect of either lacking AMPK signaling or systemic AMPK activation. Conclusions Our data suggest that while defined roles for each catalytic AMPK subunit have been identified, global deletion of myeloid AMPK signaling does not significantly impact atherosclerosis. Moreover, we show that intervention with the first-generation AMPK activator, A-769662, was not able to stem the progression of atherosclerosis. Highlights - The deletion of both catalytic subunits of AMPK in myeloid cells has no significant effect on the progression of atherosclerosis in either male or female mice - Therapeutic delivery of a first-generation AMPK activator (A-769662) for the last 6 weeks of 12-week study had no beneficial effect in either male or female mice - Studying total AMPK deletion may mask specific effects of each isoform and highlights the need for targeted disruption of AMPK phosphorylation sites via knock-in mutations, rather than the traditional “sledgehammer” knockout approach