NO
Numan Oezguen
Author with expertise in Diversity and Function of Gut Microbiome
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
1,328
h-index:
28
/
i10-index:
43
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

GABA‐producing Bifidobacterium dentium modulates visceral sensitivity in the intestine

Karina Pokusaeva et al.Jul 25, 2016
Abstract Background Recurrent abdominal pain is a common and costly health‐care problem attributed, in part, to visceral hypersensitivity. Increasing evidence suggests that gut bacteria contribute to abdominal pain perception by modulating the microbiome‐gut‐brain axis. However, specific microbial signals remain poorly defined. γ ‐aminobutyric acid ( GABA ) is a principal inhibitory neurotransmitter and a key regulator of abdominal and central pain perception from peripheral afferent neurons. Although gut bacteria are reported to produce GABA , it is not known whether the microbial‐derived neurotransmitter modulates abdominal pain. Methods To investigate the potential analgesic effects of microbial GABA , we performed daily oral administration of a specific Bifidobacterium strain ( B. dentium ATCC 27678) in a rat fecal retention model of visceral hypersensitivity, and subsequently evaluated pain responses. Key Results We demonstrate that commensal Bifidobacterium dentium produces GABA via enzymatic decarboxylation of glutamate by GadB. Daily oral administration of this specific Bifidobacterium (but not a gadB deficient) strain modulated sensory neuron activity in a rat fecal retention model of visceral hypersensitivity. Conclusions & Inferences The functional significance of microbial‐derived GABA was demonstrated by gadB ‐dependent desensitization of colonic afferents in a murine model of visceral hypersensitivity. Visceral pain modulation represents another potential health benefit attributed to bifidobacteria and other GABA ‐producing species of the intestinal microbiome. Targeting GABA ergic signals along this microbiome‐gut‐brain axis represents a new approach for the treatment of abdominal pain.
0
Citation255
0
Save
0

Distinct Microbiome-Neuroimmune Signatures Correlate With Functional Abdominal Pain in Children With Autism Spectrum Disorder

Ruth Luna et al.Dec 11, 2016
Background & AimsEmerging data on the gut microbiome in autism spectrum disorder (ASD) suggest that altered host–microbe interactions may contribute to disease symptoms. Although gut microbial communities in children with ASD are reported to differ from individuals with neurotypical development, it is not known whether these bacteria induce pathogenic neuroimmune signals.MethodsBecause commensal clostridia interactions with the intestinal mucosa can regulate disease-associated cytokine and serotonergic pathways in animal models, we evaluated whether microbiome-neuroimmune profiles (from rectal biopsy specimens and blood) differed in ASD children with functional gastrointestinal disorders (ASD-FGID, n = 14) compared with neurotypical (NT) children with FGID (NT-FGID, n = 15) and without abdominal pain (NT, n = 6). Microbial 16S ribosomal DNA community signatures, cytokines, and serotonergic metabolites were quantified and correlated with gastrointestinal symptoms.ResultsA significant increase in several mucosa-associated Clostridiales was observed in ASD-FGID, whereas marked decreases in Dorea and Blautia, as well as Sutterella, were evident. Stratification by abdominal pain showed multiple organisms in ASD-FGID that correlated significantly with cytokines (interleukin [IL]6, IL1, IL17A, and interferon-γ). Group comparisons showed that IL6 and tryptophan release by mucosal biopsy specimens was highest in ASD children with abdominal pain, whereas serotonergic metabolites generally were increased in children with FGIDs. Furthermore, proinflammatory cytokines correlated significantly with several Clostridiales previously reported to associate with ASD, as did tryptophan and serotonin.ConclusionsOur findings identify distinctive mucosal microbial signatures in ASD children with FGID that correlate with cytokine and tryptophan homeostasis. Future studies are needed to establish whether these disease-associated Clostridiales species confer early pathogenic signals in children with ASD and FGID. Emerging data on the gut microbiome in autism spectrum disorder (ASD) suggest that altered host–microbe interactions may contribute to disease symptoms. Although gut microbial communities in children with ASD are reported to differ from individuals with neurotypical development, it is not known whether these bacteria induce pathogenic neuroimmune signals. Because commensal clostridia interactions with the intestinal mucosa can regulate disease-associated cytokine and serotonergic pathways in animal models, we evaluated whether microbiome-neuroimmune profiles (from rectal biopsy specimens and blood) differed in ASD children with functional gastrointestinal disorders (ASD-FGID, n = 14) compared with neurotypical (NT) children with FGID (NT-FGID, n = 15) and without abdominal pain (NT, n = 6). Microbial 16S ribosomal DNA community signatures, cytokines, and serotonergic metabolites were quantified and correlated with gastrointestinal symptoms. A significant increase in several mucosa-associated Clostridiales was observed in ASD-FGID, whereas marked decreases in Dorea and Blautia, as well as Sutterella, were evident. Stratification by abdominal pain showed multiple organisms in ASD-FGID that correlated significantly with cytokines (interleukin [IL]6, IL1, IL17A, and interferon-γ). Group comparisons showed that IL6 and tryptophan release by mucosal biopsy specimens was highest in ASD children with abdominal pain, whereas serotonergic metabolites generally were increased in children with FGIDs. Furthermore, proinflammatory cytokines correlated significantly with several Clostridiales previously reported to associate with ASD, as did tryptophan and serotonin. Our findings identify distinctive mucosal microbial signatures in ASD children with FGID that correlate with cytokine and tryptophan homeostasis. Future studies are needed to establish whether these disease-associated Clostridiales species confer early pathogenic signals in children with ASD and FGID.
0
Citation248
0
Save
0

Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome

Jennifer Labus et al.Apr 28, 2017
Preclinical and clinical evidence supports the concept of bidirectional brain-gut microbiome interactions. We aimed to determine if subgroups of irritable bowel syndrome (IBS) subjects can be identified based on differences in gut microbial composition, and if there are correlations between gut microbial measures and structural brain signatures in IBS. Behavioral measures, stool samples, and structural brain images were collected from 29 adult IBS and 23 healthy control subjects (HCs). 16S ribosomal RNA (rRNA) gene sequencing was used to profile stool microbial communities, and various multivariate analysis approaches were used to quantitate microbial composition, abundance, and diversity. The metagenomic content of samples was inferred from 16S rRNA gene sequence data using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). T1-weighted brain images were acquired on a Siemens Allegra 3T scanner, and morphological measures were computed for 165 brain regions. Using unweighted Unifrac distances with hierarchical clustering on microbial data, samples were clustered into two IBS subgroups within the IBS population (IBS1 (n = 13) and HC-like IBS (n = 16)) and HCs (n = 23) (AUROC = 0.96, sensitivity 0.95, specificity 0.67). A Random Forest classifier provided further support for the differentiation of IBS1 and HC groups. Microbes belonging to the genera Faecalibacterium, Blautia, and Bacteroides contributed to this subclassification. Clinical features distinguishing the groups included a history of early life trauma and duration of symptoms (greater in IBS1), but not self-reported bowel habits, anxiety, depression, or medication use. Gut microbial composition correlated with structural measures of brain regions including sensory- and salience-related regions, and with a history of early life trauma. The results confirm previous reports of gut microbiome-based IBS subgroups and identify for the first time brain structural alterations associated with these subgroups. They provide preliminary evidence for the involvement of specific microbes and their predicted metabolites in these correlations.
0
Citation246
0
Save
5

Telomere dysfunction impairs intestinal differentiation and predisposes to diet-induced colitis

Mindy Engevik et al.Jul 15, 2022
Abstract Intestinal epithelium dysfunction causes barrier defects, malabsorption and dysbiosis, predicting local and systemic disease, morbidity and mortality in humans. However, the underlying causes are not well understood. Here we show that telomere shortening is a host intrinsic factor that impairs enterocyte differentiation. The presence of such undifferentiated enterocytes is associated with barrier disruption and malabsorption of nutrients, such as fructose. A fructose-rich diet causes increased fructose spillover to the colon and induces colitis in a microbiome-dependent manner. The microbiome uses fructose to synthesize essential metabolites, including NAD precursors, that complement the host’s low NAD pool in the inflamed colon. Thus, telomere shortening drives enterocyte dysfunction and predisposes to diet-induced colitis through barrier disruption, increased nutrient flux to the colon and modulation of the microbiome. This differerentiation defect expands the canonical stem cell failure-centered view of how telomere shortening impacts the intestine and predisposes to intestinal disease in conditions associated with short telomeres.
27

Infection of equine bronchial epithelial cells with a SARS-CoV-2 pseudovirus

Rebecca Legere et al.Jan 27, 2023
ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID-19, can infect animals by binding to the angiotensin-converting enzyme 2 (ACE2). Equine infection appears possible due to high homology (≈97%) between human and equine ACE2, evidence of in vitro infection in cell lines expressing equine ACE2, and evidence of seroconversion in horses after exposure to persons infected with SARS-CoV-2. Our objective was to examine susceptibility of cultured primary equine bronchial epithelial cells (EBECs) to a SARS-CoV-2 pseudovirus relative to human bronchial epithelial cells (HBECs; positive control). ACE2 expression in EBECs detected by immunofluorescence, western immunoblotting, and flow cytometry was lower in EBECs than in HBECs. EBECs were transduced with a lentivirus pseudotyped with the SARS-CoV-2 spike protein that binds to ACE2 and expresses the enhanced green fluorescent protein (eGFP) as a reporter. Cells were co-cultivated with the pseudovirus at a multiplicity of infection of 0.1 for 6 hours, washed, and maintained in media. After 96 hours, eGFP expression in EBECs was demonstrated by fluorescence microscopy, and mean Δ Ct values from quantitative PCR were significantly (P < 0.0001) higher in HBECs (8.78) than HBECs (3.24) indicating lower infectivity in EBECs. Equine respiratory tract cells were susceptible to infection with a SARS-CoV-2 pseudovirus. Lower replication efficiency in EBECs suggests that horses are unlikely to be an important zoonotic host of SARS-CoV-2, but viral mutations could render some strains more infectious to horses. Serological and virological monitoring of horses in contact with persons shedding SARS-CoV-2 is warranted. IMPORTANCE This study provides the first published evidence for SARS-CoV-2 pseudovirus infection in equine airway epithelial cells, which were less susceptible to infection than cells of human origin. This was presumably due to lower ACE2 expression in equine cells, lower viral affinity for equine ACE2, or both. Our results are important considering recent evidence for asymptomatic seroconversion in horses following exposure to COVID-19 positive humans, despite this lower susceptibility, and increased affinity of viral variants of concern for equine ACE2 compared to ancestral strains. Thus, there is great need to better characterize SARS-CoV-2 susceptibility in horses for the benefit of veterinary and human health.