JF
Janet Finer-Moore
Author with expertise in Endoplasmic Reticulum Stress and Unfolded Protein Response
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
3,207
h-index:
39
/
i10-index:
80
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

On the mechanism of sensing unfolded protein in the endoplasmic reticulum

Joel Credle et al.Dec 19, 2005
Unfolded proteins in the endoplasmic reticulum (ER) activate the ER transmembrane sensor Ire1 to trigger the unfolded protein response (UPR), a homeostatic signaling pathway that adjusts ER protein folding capacity according to need. Ire1 is a bifunctional enzyme, containing cytoplasmic kinase and RNase domains whose roles in signal transduction downstream of Ire1 are understood in some detail. By contrast, the question of how its ER-luminal domain (LD) senses unfolded proteins has remained an enigma. The 3.0-Å crystal structure and consequent structure-guided functional analyses of the conserved core region of the LD (cLD) leads us to a proposal for the mechanism of response. cLD exhibits a unique protein fold and is sufficient to control Ire1 activation by unfolded proteins. Dimerization of cLD monomers across a large interface creates a shared central groove formed by α-helices that are situated on a β-sheet floor. This groove is reminiscent of the peptide binding domains of major histocompatibility complexes (MHCs) in its gross architecture. Conserved amino acid side chains in Ire1 that face into the groove are shown to be important for UPR activation in that their mutation reduces the response. Mutational analyses suggest that further interaction between cLD dimers is required to form higher-order oligomers necessary for UPR activation. We propose that cLD directly binds unfolded proteins, which changes the quaternary association of the monomers in the membrane plane. The changes in the ER lumen in turn position Ire1 kinase domains in the cytoplasm optimally for autophosphorylation to initiate the UPR.
0

Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: A model for viral DNA binding

Julian Chen et al.Jul 11, 2000
Insolubility of full-length HIV-1 integrase (IN) limited previous structure analyses to individual domains. By introducing five point mutations, we engineered a more soluble IN that allowed us to generate multidomain HIV-1 IN crystals. The first multidomain HIV-1 IN structure is reported. It incorporates the catalytic core and C-terminal domains (residues 52–288). The structure resolved to 2.8 Å is a Y-shaped dimer. Within the dimer, the catalytic core domains form the only dimer interface, and the C-terminal domains are located 55 Å apart. A 26-aa α-helix, α6, links the C-terminal domain to the catalytic core. A kink in one of the two α6 helices occurs near a known proteolytic site, suggesting that it may act as a flexible elbow to reorient the domains during the integration process. Two proteins that bind DNA in a sequence-independent manner are structurally homologous to the HIV-1 IN C-terminal domain, suggesting a similar protein–DNA interaction in which the IN C-terminal domain may serve to bind, bend, and orient viral DNA during integration. A strip of positively charged amino acids contributed by both monomers emerges from each active site of the dimer, suggesting a minimally dimeric platform for binding each viral DNA end. The crystal structure of the isolated catalytic core domain (residues 52–210), independently determined at 1.6-Å resolution, is identical to the core domain within the two-domain 52–288 structure.
0
Citation393
0
Save
28

Structure and dynamics of the essential endogenous mycobacterial polyketide synthase Pks13

Sun Kim et al.Jan 28, 2023
Summary Mycobacterium tuberculosis is currently the leading cause of death by any bacterial infection 1 . The mycolic acid layer of the cell wall is essential for viability and virulence, and the enzymes responsible for its synthesis are therefore front line targets for antimycobacterial drug development 2,3 . Polyketide synthase 13 (Pks13) is a module comprised of a closely symmetric parallel dimer of chains, each encoding several enzymatic and transport functions, that carries out the condensation of two different very long chain fatty acids to produce mycolic acids that are essential components of the mycobacterial cell wall. Consequently individual enzymatic domains of Pks13 are targets for antimycobacterial drug development 4 . To understand this machinery, we sought to determine the structure and domain trajectories of the dimeric multi-enzyme Pks13, a 2×198,426 Dalton complex, from protein purified endogenously from mycobacteria under normal growth conditions, to capture it with normal substrates bound trapped ‘in action’. Structures of the multi-domain assembly revealed by cryogenic electron microscopy (cryoEM) define the ketosynthase (KS), linker, and acyltransferase (AT) domains, each at atomic resolution (1.8Å), with bound substrates defined at 2.4Å and 2.9Å resolution. Image classification reveals two distinct structures with alternate locations of the N-terminal acyl carrier protein (termed ACP1a, ACP1b) seen at 3.6Å and 4.6Å resolution respectively. These two structures suggest plausible intermediate states, related by a ~60Å movement of ACP1, on the pathway for substrate delivery from the fatty acyl-ACP ligase (FadD32) to the ketosynthase domain. The linking sequence between ACP1 and the KS includes an 11 amino acid sequence with 6 negatively charged side chains that lies in different positively charged grooves on the KS in ACP1a versus ACP1b structures. This charge complementarity between the extended chain and the grooves suggests some stabilization of these two distinct orientations. Other domains are visible at lower resolution and indicate flexibility relative to the KS-AT core. The chemical structures of three bound endogenous long chain fatty acid substrates with their proximal regions defined in the structures were determined by electrospray ionization mass spectrometry. The domain proximities were probed by chemical cross-linking and identified by mass spectrometry. These were incorporated into integrative structure modeling to define multiple domain configurations that transport the very long fatty acid chains throughout the multistep Pks13 mediated synthetic pathway.