GQ
Guangtao Qian
Author with expertise in Nutritional and Functional Potential of Ancient Grains
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
0
h-index:
7
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
3

A transcriptional complex of FtMYB102 and FtbHLH4 coordinately regulates the accumulation of rutin in Fagopyrum tataricum

Yaolei Mi et al.May 4, 2022
Abstract Tartary buckwheat is rich in flavonoids, which not only play an important role in plant-environment interaction, but are also beneficial to human health. Rutin is a therapeutic flavonol which is massively accumulated in Tartary buckwheat. It has been demonstrated that transcription factors control rutin biosynthesis. However, the transcriptional regulatory network of rutin is not fully clear. In this study, through transcriptome and target metabolomics, we validated the role of FtMYB102 and FtbHLH4 TFs at the different developmental stages of Tartary buckwheat. The elevated accumulation of rutin in the sprout appears to be closely associated with the expression of FtMYB102 and FtHLH4. Yeast two-hybrid, transient luciferase activity and co-immunoprecipitation demonstrated that FtMYB102 and FtbHLH4 can interact and form a transcriptional complex. Moreover, yeast one-hybrid showed that both FtMYB102 and FtbHLH4 directly bind to the promoter of chalcone isomerase ( CHI ), and they can coordinately induce CHI expression as shown by transient luciferase activity assay. Finally, we transferred the FtMYB102 and FtbHLH4 into the hairy roots of Tartary buckwheat and found that they both can promote the accumulation of rutin. Our results indicate that FtMYB102 and FtbHLH4 can form a transcriptional complex by inducing CHI expression to coordinately promote the accumulation of rutin.
3

Syntaxin of plants 32 regulates pollen wall development and pollen tube cell wall integrity via controlling secretory pathway

Yuqi Liu et al.Feb 7, 2023
Abstract Pollen tubes (PTs) elongate in a polar way to deliver sperm cells to the ovule. Pollen wall development and PT cell wall integrity (CWI) maintenance are critical for PT growth and double fertilization. Pollen wall development mainly relies on secretion of exine precursors in tapetum. RALF4/19-ANX/BUPS-MRI and RALF4/19-LRX-AUN are two distinct signaling pathways but converge to fine-tune CWI during PT growth. Here, we discovered that atsyp32+/- , AtSYP32 RNAi and AtSYP3132 RNAi lines were male sterile. The tapetum development in these lines were disturbed, and the pollen wall structure was impaired resulting in pollen grain and tube bursting and less PTs navigated to micropyles. Strikingly, there were numerous ectopic secretory vesicles retained in pollen cytoplasm, and the abundance or distribution of polysaccharides and AGPs altered significantly in PTs of the mutants and RNAi lines. AtSYP32 interacted with the vesicle transport regulators SEC31B, SEC22 and BET12, the PT CWI regulators RALF19 and LRX11, and the XyG xylosyltransferase XXT5, in the Golgi apparatus. Transcription of some genes related to pollen wall biosynthesis and PT CWI maintenance were seriously affected by AtSYP32 downregulation. Our findings illustrate that AtSYP32 plays essential roles in pollen wall development and PT CWI maintenance via controlling secretory pathway. IN A NUTSHELL Background Pollen wall is the most complex cell wall. Pollen wall development mainly relies on secretion of precursors of exine and pollen coat in tapetal cells. Pollen tubes (PTs) grow in a polar way to deliver sperm cells to the ovule. Maintenance of PT cell wall integrity (CWI) is critical for PT elongation and double fertilization. RALF4/19 ligands interact with BUPS-ANX receptors, signaling it in an autocrine manner to maintain CWI during PT elongation. RALF4/19-LRX-AUN pathway is distinct with RALF4/19-ANX/BUPS-MRI pathway but they converge to fine-tune CWI during PT growth. Biosynthesis of PT cell wall involves multiple subcellular compartments and vesicle transport pathways. Golgi apparatus acts as a hub in vesicle trafficking. Golgi-syntaxin AtSYP31 and AtSYP32 regulate pollen development by controlling intra-Golgi transport and Golgi morphology Question What is AtSYP32 role in pollen wall and tapetum development? Who are the AtSYP32 partners that regulate secretion of cell wall biosynthesis materials? Findings We found that no homozygote progeny was obtained from self-pollinated atsyp32+/- alleles due to pollen sterile. The tapetum development and degeneration in atsyp32+/- mutants was severely delayed, and the pollen wall and PT wall structure were impaired. Strikingly, there were numerous ectopic secretory vesicles retained in pollen cytoplasm in atsyp32+/- mutants, and the abundance or distribution of PT wall polysaccharides and AGPs altered obviously. AtSYP32 interacted with the vesicle transport regulators SEC31B, SEC22 and BET12, the PT CWI regulators RALF19 and LRX11, and XyG xylosyltransferase XXT5, in the Golgi. All these highlight that AtSYP32 regulates pollen wall development and maintenance of PT CWI via controlling secretory pathway. Next steps The biological significances and the molecular mechanisms of AtSYP32 interacting with XXT5, RALF19 and LRX11 are elusive but thought-provoking. We are going to clarify the mechanisms.
0

Bacillus altitudinis AD13−4 Enhances Saline–Alkali Stress Tolerance of Alfalfa and Affects Composition of Rhizosphere Soil Microbial Community

Muneer Khoso et al.May 26, 2024
Saline and alkaline stresses limit plant growth and reduce crop yield. Soil salinization and alkalization seriously threaten the sustainable development of agriculture and the virtuous cycle of ecology. Biofertilizers made from plant growth−promoting rhizobacteria (PGPR) not only enhance plant growth and stress tolerance, but also are environmentally friendly and cost-effective. There have been many studies on the mechanisms underlying PGPRs enhancing plant salt resistance. However, there is limited knowledge about the interaction between PGPR and plants under alkaline–sodic stress. To clarify the mechanisms underlying PGPR’s improvement of plants’ tolerance to alkaline–sodic stress, we screened PGPR from the rhizosphere microorganisms of local plants growing in alkaline–sodic land and selected an efficient strain, Bacillus altitudinis AD13−4, as the research object. Our results indicate that the strain AD13−4 can produce various growth-promoting substances to regulate plant endogenous hormone levels, cell division and differentiation, photosynthesis, antioxidant capacity, etc. Transcriptome analysis revealed that the strain AD13−4 significantly affected metabolism and secondary metabolism, signal transduction, photosynthesis, redox processes, and plant–pathogen interactions. Under alkaline–sodic conditions, inoculation of the strain AD13−4 significantly improved plant biomass and the contents of metabolites (e.g., soluble proteins and sugars) as well as secondary metabolites (e.g., phenols, flavonoids, and terpenoids). The 16S rRNA gene sequencing results indicated that the strain AD13−4 significantly affected the abundance and composition of the rhizospheric microbiota and improved soil activities and physiochemical properties. Our study provides theoretical support for the optimization of saline–alkali-tolerant PGPR and valuable information for elucidating the mechanism of plant alkaline–sodic tolerance.