GV
Giovanni Volpe
Author with expertise in Hydrodynamics of Active Matter
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
22
(82% Open Access)
Cited by:
4,657
h-index:
54
/
i10-index:
130
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Active Brownian motion tunable by light

Ivo Buttinoni et al.Jun 27, 2012
Active Brownian particles are capable of taking up energy from their environment and converting it into directed motion; examples range from chemotactic cells and bacteria to artificial micro-swimmers. We have recently demonstrated that Janus particles, i.e. gold-capped colloidal spheres, suspended in a critical binary liquid mixture perform active Brownian motion when illuminated by light. In this paper, we investigate in more detail their swimming mechanism, leading to active Brownian motion. We show that the illumination-borne heating induces a local asymmetric demixing of the binary mixture, generating a spatial chemical concentration gradient which is responsible for the particle's self-diffusiophoretic motion. We study this effect as a function of the functionalization of the gold cap, the particle size and the illumination intensity: the functionalization determines what component of the binary mixture is preferentially adsorbed at the cap and the swimming direction (towards or away from the cap); the particle size determines the rotational diffusion and, therefore, the random reorientation of the particle; and the intensity tunes the strength of the heating and, therefore, of the motion. Finally, we harness this dependence of the swimming strength on the illumination intensity to investigate the behavior of a micro-swimmer in a spatial light gradient, where its swimming properties are space-dependent.
0
Paper
Citation357
0
Save
1

BRAPH: A graph theory software for the analysis of brain connectivity

Mite Mijalkov et al.Aug 1, 2017
The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH–BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer's disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson's patients with mild cognitive impairment.
0

Nanoalignment by critical Casimir torques

Wang Gan et al.Jun 14, 2024
Abstract The manipulation of microscopic objects requires precise and controllable forces and torques. Recent advances have led to the use of critical Casimir forces as a powerful tool, which can be finely tuned through the temperature of the environment and the chemical properties of the involved objects. For example, these forces have been used to self-organize ensembles of particles and to counteract stiction caused by Casimir-Liftshitz forces. However, until now, the potential of critical Casimir torques has been largely unexplored. Here, we demonstrate that critical Casimir torques can efficiently control the alignment of microscopic objects on nanopatterned substrates. We show experimentally and corroborate with theoretical calculations and Monte Carlo simulations that circular patterns on a substrate can stabilize the position and orientation of microscopic disks. By making the patterns elliptical, such microdisks can be subject to a torque which flips them upright while simultaneously allowing for more accurate control of the microdisk position. More complex patterns can selectively trap 2D-chiral particles and generate particle motion similar to non-equilibrium Brownian ratchets. These findings provide new opportunities for nanotechnological applications requiring precise positioning and orientation of microscopic objects.
0
Paper
Citation3
0
Save
Load More