Abstract Background and aims Despite recent progress in identifying aberrant genetic and epigenetic alterations in esophageal squamous cell carcinoma (ESCC), the mechanism of ESCC initiation remains unknown. Methods Using CRISPR/Cas 9-based genetic ablation, we targeted 9 genes ( TP53 , CDKN2A , NOTCH1 , NOTCH3 , KMT2D , KMT2C , FAT1 , FAT4 , and AJUBA ) in murine esophageal organoids (EOs). Transcriptomic phenotypes of organoids and chemokine released by organoids were analyzed by single-cell RNA sequencing (scRNA-seq). Tumorigenicity and immune evasion of organoids were monitored by allograft transplantation. Human ESCC scRNA-seq datasets were analyzed to classify patients and find subsets relevant to organoid models and immune evasion. Results We established 32 genetically engineered EOs and identified key genetic determinants that drive ESCC initiation. A single-cell transcriptomic analysis uncovered that Trp53 , Cdkn2a , and Notch1 (PCN) triple-knockout (KO) induces neoplastic features of ESCC by generating cell lineage heterogeneity and high cell plasticity. PCN KO also generates an immunosuppressive niche enriched with exhausted T cells and M2 macrophages via the CCL2-CCR2 axis. Mechanistically, CDKN2A inactivation transactivates CCL2 via NF-κB. Moreover, comparative single-cell transcriptomic analyses stratified ESCC patients and identified a specific subtype recapitulating the PCN-type ESCC signatures, including the high expression of CCL2 and CD274/PD-L1. Conclusions Our study unveils that loss of TP53 , CDKN2A , and NOTCH1 induces esophageal neoplasia and immune evasion for ESCC initiation and proposes the CCL2 blockade as a viable option for targeting PCN-type ESCC.