JH
John Hanover
Author with expertise in Glycosylation in Health and Disease
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
5
h-index:
6
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
4

Nutrient Responsive O-GlcNAcylation Dynamically Modulates Galectin 3 Secretion

Mohit Mathew et al.Apr 5, 2021
ABSTRACT Endomembrane glycosylation and cytoplasmic O-GlcNAcylation each play essential roles in nutrient sensing, and in fact, characteristic changes in glycan patterns have been described in disease states such as diabetes and cancer. These changes in glycosylation have important functional roles and can drive disease progression. However, little is known about the molecular mechanisms underlying how these signals are integrated and transduced into biological effects. Galectins are proteins that bind glycans that are secreted by a poorly characterized non-classical secretory mechanism. Once outside the cell, galectins bind to terminal galactose residues of cell surface glycans and modulate numerous extracellular functions like clathrin independent endocytosis (CIE). Originating in the cytoplasm, galectins are predicted substrates for O-GlcNAc addition and removal. This study shows that galectin 3 is O-GlcNAcylated, and that changes in O-GlcNAc cycling alters its secretion. Moreover, we determined that there is a significant difference in O-GlcNAcylation status between cytoplasmic and secreted galectin 3. We observed dramatic alterations in galectin 3 secretion in response to nutrient conditions and that these changes were dependent on dynamic O-GlcNAcylation. Finally, we showed that alterations in galectin 3 secretion via disrupted O-GlcNAcylation drove changes in CIE. These results indicate that dynamic O-GlcNAcylation of galectin 3 plays a role in modulating its secretion and can tune its function of transducing nutrient sensing information coded in cell surface glycosylation into biological effects.
4
Citation3
0
Save
1

The O-GlcNAc transferase OGT is a conserved and essential regulator of the cellular and organismal response to hypertonic stress

Sarel Urso et al.May 1, 2020
Abstract The conserved O -GlcNAc transferase OGT O -GlcNAcylates serine and threonine residues of intracellular proteins to regulate their function. OGT is required for viability in mammalian cells, but its specific roles in cellular physiology are poorly understood. Here we describe a conserved requirement for OGT in an essential aspect of cell physiology: the hypertonic stress response. Through a forward genetic screen in Caenorhabditis elegans , we discovered OGT is acutely required for osmoprotective protein expression and adaptation to hypertonic stress. Gene expression analysis shows that ogt-1 functions through a post-transcriptional mechanism. Human OGT partially rescues the C. elegans phenotypes, suggesting that the osmoregulatory functions of OGT are ancient. Intriguingly, mutations that ablate O -GlcNAcylation activity in either human or C. elegans OGT rescue the hypertonic stress response phenotype. Our findings are among the first to demonstrate a specific physiological role for OGT at the organismal level and demonstrate that OGT engages in important molecular functions outside of its well described roles in post-translational O-GlcNAcylation of intracellular proteins. Author Summary The ability to sense and adapt to changes in the environment is an essential feature of cellular life. Changes in environmental salt and water concentrations can rapidly cause cell volume swelling or shrinkage and, if left unchecked, will lead to cell and organismal death. All organisms have developed similar physiological strategies for maintaining cell volume. However, the molecular mechanisms that control these physiological outputs are not well understood in animals. Using unbiased genetic screening in C. elegans , we discovered that a highly conserved enzyme called O-GlcNAc transferase (OGT) is essential for regulating physiological responses to increased environmental solute levels. A human form of OGT can functionally substitute for worm OGT, showing that this role is conserved across evolution. Surprisingly, the only known enzymatic activity of OGT was not required for this role, suggesting this enzyme has important undescribed molecular functions. Our studies reveal a new animal-specific role for OGT in the response to osmotic stress and show that C. elegans is an important model for defining the conserved molecular mechanisms that respond to alterations in cell volume.
1
Citation2
0
Save
2

The Essential Role of O-GlcNAcylation in Hepatic Differentiation

Dakota Robarts et al.Feb 17, 2023
O-GlcNAcylation is a post-translational modification catalyzed by the enzyme O-GlcNAc transferase (OGT), which transfers a single N-acetylglucosamine sugar from UDP-GlcNAc to the protein on serine and threonine residues on proteins. Another enzyme, O-GlcNAcase (OGA), removes this modification. O-GlcNAcylation plays an important role in pathophysiology. Here, we report that O-GlcNAcylation is essential for hepatocyte differentiation, and chronic loss results in fibrosis and hepatocellular carcinoma.Single-cell RNA-sequencing was used to investigate hepatocyte differentiation in hepatocyte-specific OGT-KO mice with increased hepatic O-GlcNAcylation and in OGA-KO mice with decreased O-GlcNAcylation in hepatocytes. HCC patient samples and the DEN-induced hepatocellular carcinoma (HCC) model were used to investigate the effect of modulation of O-GlcNAcylation on the development of liver cancer.Loss of hepatic O-GlcNAcylation resulted in disruption of liver zonation. Periportal hepatocytes were the most affected by loss of differentiation characterized by dysregulation of glycogen storage and glucose production. OGT-KO mice exacerbated DEN-induced HCC development with increased inflammation, fibrosis, and YAP signaling. Consistently, OGA-KO mice with increased hepatic O-GlcNAcylation inhibited DEN-induced HCC. A progressive loss of O-GlcNAcylation was observed in HCC patients.Our study shows that O-GlcNAcylation is a critical regulator of hepatic differentiation, and loss of O-GlcNAcylation promotes hepatocarcinogenesis. These data highlight increasing O-GlcNAcylation as a potential therapy in chronic liver diseases, including HCC.
2

O-GlcNAc transferase plays a non-catalytic role in C. elegans male fertility

Daniel Konzman et al.May 26, 2022
Abstract Animal behavior is influenced by the competing drives to maintain energy and to reproduce. The balance between these evolutionary pressures and how nutrient signaling pathways intersect with mating drive remains unclear. The nutrient sensor O -GlcNAc transferase, which post-translationally modifies intracellular proteins with a single monosaccharide, is responsive to cellular nutrient status and regulates diverse biological processes. Though essential in most metazoans, O -GlcNAc transferase ( ogt-1 ) is dispensable in Caenorhabditis elegans , allowing genetic analysis of its physiological roles. Compared to control, ogt-1 males have a four-fold reduction in mean offspring, with nearly two thirds producing zero progeny. Interestingly, we found that isolated ogt-1 males are less likely to engage in mate-searching, and they initiate mating less often when exposed to mates. In addition, ogt-1 males which do initiate mating are less likely to continue with subsequent steps in the mating process, resulting in fewer successful sperm transfers. Lowering barriers to mating such as immobilizing mates or allowing more mating time significantly improves ogt-1 male mating. Surprisingly, we found high fertility levels for ogt-1 mutant males with hypodermal expression of wild-type ogt-1 and by ogt-1 harboring mutations that prevent the transfer of O -GlcNAc by OGT-1. This suggests OGT-1 serves a non-catalytic function in the hypodermis impacting the male mating drive. This study builds upon research on the nutrient sensor O - GlcNAc transferase and demonstrates a role it plays in the interplay between the evolutionary drives for reproduction and survival. Author Summary Animals must make decisions on whether to engage in reproduction or conserve energy. These decisions must take into account the energy available to the animal, therefore making the nutrient sensing enzyme OGT of particular interest. In response to nutrient levels in the cell, OGT transfers the GlcNAc sugar onto proteins to regulate their function. OGT is implicated in a number of human diseases including diabetes, cancer, and X-linked intellectual disability. By deleting the gene encoding OGT in the nematode C. elegans , we show OGT is required for male fertility. We assessed the behavior of these mutant male worms and found they have a reduced mating drive. Surprisingly, restoring OGT specifically in the hypodermis was able to raise male fertility and mating drive back to normal levels. In addition, missense mutations in the OGT catalytic domain which prevent the enzyme from transferring GlcNAc do not negatively impact fertility, suggesting a different function of OGT is important in this process. Our study demonstrates that OGT is important in critical behavioral decisions and that further investigation in C. elegans may help reveal new functions of the enzyme.