QF
Qinqin Fei
Author with expertise in Mechanical Ventilation in Respiratory Failure and ARDS
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
1
h-index:
6
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

Macrophage-targeted lipid nanoparticle delivery of microRNA-146a to mitigate hemorrhagic shock-induced acute respiratory distress syndrome

Qinqin Fei et al.Feb 19, 2023
The pro-inflammatory response of alveolar macrophages to injurious physical forces during mechanical ventilation is regulated by the anti-inflammatory microRNA, miR-146a. Increasing miR-146a expression to supraphysiologic levels using untargeted lipid nanoparticles reduces ventilator-induced lung injury, but requires a high initial dose of miR-146a making it less clinically applicable. In this study, we developed mannosylated lipid nanoparticles that can effectively mitigate lung injury at the initiation of mechanical ventilation with lower doses of miR-146a. We used a physiologically relevant humanized in vitro co-culture system to evaluate the cell-specific targeting efficiency of the mannosylated lipid nanoparticle. We discovered that mannosylated lipid nanoparticles preferentially deliver miR-146a to alveolar macrophages and reduce force-induced inflammation in vitro . Our in vivo study using a clinically relevant mouse model of hemorrhagic shock-induced acute respiratory distress syndrome demonstrated that delivery of a low dose miR-146a (0.1 nmol) using mannosylated lipid nanoparticles dramatically increases miR-146a in mouse alveolar macrophages and decreases lung inflammation. These data suggest that mannosylated lipid nanoparticles may have therapeutic potential to mitigate lung injury during mechanical ventilation.
6
Citation1
0
Save
0

Nanoparticle delivery of microRNA-146a regulates mechanotransduction in lung macrophages and mitigates lung injury during mechanical ventilation

Christopher Bobba et al.Oct 11, 2019
During mechanical ventilation, injurious biophysical forces exacerbate lung injury. These forces disrupt alveolar capillary barrier integrity, trigger proinflammatory mediator release, and differentially regulate genes and non-coding oligonucleotides such as microRNAs. In this study, we identify miR-146a as a mechanosensitive microRNA in alveolar macrophages that has therapeutic potential to mitigate lung injury during mechanical ventilation. We used humanized in-vitro systems, mouse models, and biospecimens from mechanically ventilated patients to elucidate the expression dynamics of miR-146a that might be required to decrease lung injury during mechanical ventilation. We found that the endogenous increase in miR-146a following injurious was relatively modest and not sufficient to prevent lung injury. However, when miR-146a was highly overexpressed using a nanoparticle-based delivery platform in vivo, it was sufficient to prevent lung injury. These data indicate that the endogenous increase in microRNA-146a during MV is a compensatory response that only partially limits VILI and that nanoparticle delivery approaches that significantly over-express microRNA-146a in AMs is an effective strategy for mitigating VILI.
0

Mechanosensitive activation of mTORC1 mediates ventilator induced lung injury during the acute respiratory distress syndrome

Hyunwook Lee et al.Mar 4, 2020
Acute respiratory distress syndrome (ARDS) is a highly lethal condition that impairs lung function and causes respiratory failure. Mechanical ventilation maintains gas exchange in patients with ARDS, but exposes lung cells to physical forces that exacerbate lung injury. Our data demonstrate that mTOR complex 1 (mTORC1) is a mechanosensor in lung epithelial cells and that activation of this pathway during mechanical ventilation exacerbates lung injury. We found that mTORC1 is activated in lung epithelial cells following volutrauma and atelectrauma in mice and humanized in vitro models of the lung microenvironment. mTORC1 is also activated in lung tissue of mechanically ventilated patients with ARDS. Deletion of Tsc2, a negative regulator of mTORC1, in epithelial cells exacerbates physiologic lung dysfunction during mechanical ventilation. Conversely, treatment with rapamycin at the time mechanical ventilation is initiated prevents physiologic lung injury (i.e. decreased compliance) without altering lung inflammation or barrier permeability. mTORC1 inhibition mitigates physiologic lung injury by preventing surfactant dysfunction during mechanical ventilation. Our data demonstrate that in contrast to canonical mTORC1 activation under favorable growth conditions, activation of mTORC1 during mechanical ventilation exacerbates lung injury and inhibition of this pathway may be a novel therapeutic target to mitigate ventilator induced lung injury during ARDS.