YS
Yunguang Sun
Author with expertise in Regulation of RNA Processing and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
555
h-index:
21
/
i10-index:
35
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

Comprehensive interrogation of human skeletal muscle reveals a dissociation between insulin resistance and mitochondrial capacity

Katie Whytock et al.Feb 24, 2023
Abstract Aims/Hypothesis Insulin resistance and blunted mitochondrial capacity in skeletal muscle are often synonymous; however, this association remains controversial. The aim of this study was to perform an in-depth multi-factorial comparison of skeletal muscle mitochondrial capacity between individuals who were lean and active (Active), individuals with obesity (Obese) and individuals with Obesity, insulin resistance and type 2 diabetes (T2D). Methods Skeletal muscle biopsies were obtained from the Vastus Lateralis of individuals who were lean and active (Active- n = 9), individuals with obesity (Obese- n = 9) and individuals with obesity insulin resistance and T2D (T2D- n =22) in this cross-sectional design. Mitochondrial capacity was assessed by ex vivo mitochondrial respiration with fatty-acid and glycolytic supported protocols adjusted for mitochondrial content (mtDNA and citrate synthase activity). Supercomplex assembly was measured by BN-PAGE and immunoblot. TCA cycle intermediates were assessed with targeted metabolomics. Exploratory transcriptomics and DNA methylation analyses were performed to uncover molecular differences affecting mitochondrial function among the three groups. Results Active had greater mitochondrial capacity compared to both Obese and T2D for ex vivo mitochondrial respiration with fatty-acid and glycolytic supported protocols adjusted for mitochondrial content ( P < 0.05). Complex IV supercomplex assembley was greater in Active compared to Obese and T2D ( P < 0.05) whereas Complex I and III supercomplex assembly was greater in Active compared to T2D only ( P < 0.05). TCA cycle intermediates; citrate, succinate, fumarate and malate were all significantly greater in Active compared to Obese and T2D ( P < 0.05). Strikingly, Obese and T2D do not differ in any of the skeletal muscle mitochondrial measurements. Active had an upregulation of genes related to respiration/mitochondrial capacity compared to both Obese and T2D. Transcriptional differences between Obese and T2D were not driven by mitochondrial related process. Active had reduced methylation correlated with increased gene expression for important mitochondrial-related genes, including ATP5PD and MFN2 . Conclusions/Interpretations We reveal no discernable differences in skeletal muscle mitochondrial content, mitochondrial capacity and mitochondrial molecular profiles between obese individuals with and without T2D that had comparable levels of confounding factors (BMI, age, aerobic capacity) that affect mitochondrial capacity. We highlight that lean, active individuals have enhanced skeletal muscle mitochondrial capacity that is also reflected at the level of DNA methylation and gene transcription. The collective observation of comparable muscle mitochondrial capacity in individuals with obesity and T2D (vs. individuals without T2D) underscores a dissociation from skeletal muscle insulin resistance. Clinical trial number NCT0191110
6
Citation1
0
Save
6

RNA-binding protein FXR1 drives cMYC translation by mRNA circularization through eIF4F recruitment in ovarian cancer

Jasmine George et al.Jul 19, 2020
Abstract Background The RNA-binding protein FXR1 (fragile X-related protein 1) has been implicated as an important regulator of post-transcriptional changes of mRNAs. However, its role in mRNA circularization and recruitment of eukaryotic translation initiation factors for protein translation remains obscure. Here, we aimed to investigate the molecular mechanisms and potential clinical applications of FXR1 in ovarian cancer growth and progression. Methods FXR1 copy number variation, mRNA expression, protein levels, and their association with prognosis were determined in clinical datasets. An orthotopic ovarian cancer model and bioluminescence imaging were used for preclinical evaluation of FXR1 in vivo . Reverse phase protein arrays (RPPA) and qPCR arrays were performed to identify FXR1’s key targets and downstream effects. SUnSET and polysome profiling were used to determine the translational effects of FXR1. Immunoprecipitation and immunofluorescence were performed to identify the interaction between FXR1 and cMYC mRNA and eIF4F complex. RNA-immunoprecipitation (RIP), RNA electrophoretic mobility shift assays (REMSA), proximity ligation assays (PLA), and biochemical assays were used to identify the specific site on cMYC mRNA to which FXR1 binds to promote mRNA circularization and translation. Results We found that amplification and copy-gain of FXR1 increased the expression of FXR1 mRNA and FXR1 protein in ovarian cancer patients, and these events associated with poor prognosis. We demonstrated that FXR1 binds to AU-rich elements (ARE) within the 3’ untranslated region (3’UTR) of cMYC. As a consequence, FXR1 binding to cMYC 3’UTR leads to the circularization of mRNA and facilitated the recruitment of eukaryotic translation initiation factors (eIFs) to translation start site for improving protein synthesis. Conclusion We found that FXR1 upregulates a known oncogene, cMYC, by binding to AU-rich elements within the 3’UTR, leading to the recruitment of the eIF4F complex for cMYC translation. Our findings uncover a novel mechanism of action of FXR1 in tumorigenesis and provides opportunities to use FXR1 and its downstream effectors as biomarkers or therapeutic targets in ovarian and other cancers.