AS
Arjun Sharma
Author with expertise in Lipid Rafts and Membrane Dynamics
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
0
h-index:
8
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
4

Tight hydrophobic core and flexible helices yield MscL with a high tension gating threshold and a membrane area mechanical strain buffer

Arjun Sharma et al.Feb 27, 2023
ABSTRACT The mechanosensitive (MS) channel of large conductance, MscL, is the high-tension threshold osmolyte release valve that limits turgor pressure in bacterial cells in the event of drastic hypoosmotic shock. Despite MscL from M. tuberculosis (TbMscL) being the first structurally characterized MS channel, its protective mechanism of activation at nearly-lytic tensions has not been fully understood. Here, we describe atomistic simulations of expansion and opening of wild-type (WT) TbMscL in comparison with five of its gain-of-function (GOF) mutants. We show that under far-field membrane tension applied to the edge of the periodic simulation cell, WT TbMscL expands into a funnel-like structure with trans-membrane helices bent by nearly 70 degrees, but does not break its ‘hydrophobic seal’ within extended 20 μs simulations. GOF mutants carrying hydrophilic substitutions in the hydrophobic gate of increasing severity (A20N, V21A, V21N, V21T and V21D) also quickly transition into funnel-shaped conformations but subsequently fully open within 1-8 us. This shows that solvation of the de-wetted (vapor-locked) constriction is the rate-limiting step in the gating of TbMscL preceded by area-buffering silent expansion. Pre-solvated gates in severe V21N and V21D mutants eliminate this barrier. We predict that the asymmetric shape-change of the periplasmic side of the channel during the silent expansion provides strain-buffering to the outer leaflet thus re-distributing the tension to the inner leaflet, where the gate resides.
0

Additive Manufacturing of Magnetic Materials for Energy, Environment, Healthcare, and Industry Applications

Bahareh Rezaei et al.Nov 28, 2024
Abstract Recent advancements in additive manufacturing (AM) techniques have significantly expanded the potential applications of magnetic materials and devices. This review summarizes various AM methods, including ink‐based and ink‐free processes, and their use in fabricating complex magnetic structures with specific properties tailored for different fields. Key applications discussed include energy‐harvesting devices enhanced with magnetic nanoparticles, water decontamination through magnetically guided microswimmers, and magnetic soft composites in robotics and medical devices. In addition, the integration of AM in producing wearable and flexible magnetic sensors is highlighted, demonstrating its transformative impact on human‐machine interactions. Furthermore, rare‐earth‐free magnets and electric motor designs enabled by AM techniques are also discussed. Despite material compatibility and scalability challenges, AM provides opportunities for creating multifunctional, sustainable devices with reduced waste. Future research should focus on optimizing these techniques for complex applications and large‐scale production, particularly in eco‐friendly and industrial settings.