JV
Juan Vanegas
Author with expertise in Lipid Rafts and Membrane Dynamics
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
2
h-index:
14
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
5

Mechanical Activation of MscL Revealed by a Locally Distributed Tension Molecular Dynamics Approach

R. Tatikonda et al.Aug 23, 2020
ABSTRACT Membrane tension perceived by mechanosensitive (MS) proteins mediates cellular responses to mechanical stimuli and osmotic stresses, and it also guides multiple biological functions including cardiovascular control and development. In bacteria, MS channels function as tension-activated pores limiting excessive turgor pressure, with MscL (MS channel of large conductance) acting as an emergency release valve preventing cell lysis. Previous attempts to simulate gating transitions in MscL by either directly applying steering forces to the protein or by increasing the whole system tension were not fully successful and often disrupted the integrity of the system. We present a novel locally distributed tension molecular dynamics (LDT-MD) simulation method that allows application of forces continuously distributed among lipids surrounding the channel using a specially constructed collective variable. We report reproducible and reversible transitions of MscL to the open state with measured parameters of lateral expansion and conductivity that exactly satisfy experimental values. The LDT-MD method enables exploration of the MscL gating process with different pulling velocities and variable tension asymmetry between the inner and outer membrane leaflets. We use LDT-MD in combination with well-tempered metadynamics to reconstruct the tension-dependent free energy landscape for the opening transition in MscL. SIGNIFICANCE Membrane-embedded mechanosensitive (MS) proteins are essential for numerous biological functions including cardiovascular control and development, osmotic regulation, touch and pain sensing. In this work, we present a novel molecular dynamics simulation method that allows rapid and systematic exploration of structure, dynamics, and energetics of the mechanical transduction process in MS proteins under tightly controlled local tension distributed in the lipid rim around the protein. We provide a detailed description of the gating transition for the tension-activated bacterial mechanosensitive channel of large conductance, MscL, which is the best characterized channel of this type. MscL functions as a tension-activated emergency osmolyte release valve that limits excessive turgor pressure, prevents cell lysis and thus imparts environmental stability to most free-living bacteria.
5
Citation2
0
Save
0

Metadynamics simulations reveal mechanisms of Na+ and Ca2+ transport in two open states of the channelrhodopsin chimera, C1C2

Lindsey Prignano et al.Sep 6, 2024
Cation conducting channelrhodopsins (ChRs) are a popular tool used in optogenetics to control the activity of excitable cells and tissues using light. ChRs with altered ion selectivity are in high demand for use in different cell types and for other specialized applications. However, a detailed mechanism of ion permeation in ChRs is not fully resolved. Here, we use complementary experimental and computational methods to uncover the mechanisms of cation transport and valence selectivity through the channelrhodopsin chimera, C1C2, in the high- and low-conducting open states. Electrophysiology measurements identified a single-residue substitution within the central gate, N297D, that increased Ca 2+ permeability vs. Na + by nearly two-fold at peak current, but less so at stationary current. We then developed molecular models of dimeric wild-type C1C2 and N297D mutant channels in both open states and calculated the PMF profiles for Na + and Ca 2+ permeation through each protein using well-tempered/multiple-walker metadynamics. Results of these studies agree well with experimental measurements and demonstrate that the pore entrance on the extracellular side differs from original predictions and is actually located in a gap between helices I and II. Cation transport occurs via a relay mechanism where cations are passed between flexible carboxylate sidechains lining the full length of the pore by sidechain swinging, like a monkey swinging on vines. In the mutant channel, residue D297 enhances Ca 2+ permeability by mediating the handoff between the central and cytosolic binding sites via direct coordination and sidechain swinging. We also found that altered cation binding affinities at both the extracellular entrance and central binding sites underly the distinct transport properties of the low-conducting open state. This work significantly advances our understanding of ion selectivity and permeation in cation channelrhodopsins and provides the insights needed for successful development of new ion-selective optogenetic tools.
0

Structural basis of bulk lipid transfer by bridge-like lipid transfer protein LPD-3

Yunsik Kang et al.Jun 22, 2024
Abstract Bridge-like lipid transport proteins (BLTPs) are an evolutionarily conserved family of proteins that localize to membrane contact sites and are thought to mediate the bulk transfer of lipids from a donor membrane, typically the endoplasmic reticulum (ER), to an acceptor membrane, such as a that of the cell or an organelle 1 . Despite the fundamental importance of BLTPs for cellular function, the architecture, composition, and lipid transfer mechanisms remain poorly characterized. Here, we present the subunit composition and the cryo-electron microscopy structure of the native LPD-3 BLTP complex isolated from transgenic C. elegans . LPD-3 folds into an elongated, rod-shaped tunnel whose interior is filled with ordered lipid molecules that are coordinated by a track of ionizable residues that line one side of the tunnel. LPD-3 forms a complex with two previously uncharacterized proteins, here named “Intake” and “Spigot”, both of which interact with the N-terminal end of LPD-3 where lipids enter the tunnel. Intake has three transmembrane helices, one of which borders the entrance to the tunnel; Spigot has one transmembrane helix and extends 80 Å along the cytosolic surface of LPD-3. Experiments in multiple model systems indicate that Spigot plays a conserved role in ER-PM contact site formation. Our LPD-3 complex structural data, together with molecular dynamics simulations of the transmembrane region in a lipid bilayer, reveal protein-lipid interactions that suggest a model for how the native LPD-3-complex mediates bulk lipid transport and provide a foundation for mechanistic studies of BLTPs.
4

Tight hydrophobic core and flexible helices yield MscL with a high tension gating threshold and a membrane area mechanical strain buffer

Arjun Sharma et al.Feb 27, 2023
ABSTRACT The mechanosensitive (MS) channel of large conductance, MscL, is the high-tension threshold osmolyte release valve that limits turgor pressure in bacterial cells in the event of drastic hypoosmotic shock. Despite MscL from M. tuberculosis (TbMscL) being the first structurally characterized MS channel, its protective mechanism of activation at nearly-lytic tensions has not been fully understood. Here, we describe atomistic simulations of expansion and opening of wild-type (WT) TbMscL in comparison with five of its gain-of-function (GOF) mutants. We show that under far-field membrane tension applied to the edge of the periodic simulation cell, WT TbMscL expands into a funnel-like structure with trans-membrane helices bent by nearly 70 degrees, but does not break its ‘hydrophobic seal’ within extended 20 μs simulations. GOF mutants carrying hydrophilic substitutions in the hydrophobic gate of increasing severity (A20N, V21A, V21N, V21T and V21D) also quickly transition into funnel-shaped conformations but subsequently fully open within 1-8 us. This shows that solvation of the de-wetted (vapor-locked) constriction is the rate-limiting step in the gating of TbMscL preceded by area-buffering silent expansion. Pre-solvated gates in severe V21N and V21D mutants eliminate this barrier. We predict that the asymmetric shape-change of the periplasmic side of the channel during the silent expansion provides strain-buffering to the outer leaflet thus re-distributing the tension to the inner leaflet, where the gate resides.