VS
Valentin Sabatet
Author with expertise in Molecular Mechanisms of Ras Signaling Pathways
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
62
h-index:
3
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
155

Astrocytes close the mouse critical period for visual plasticity

Jérôme Ribot et al.Jul 2, 2021
+13
C
R
J
How astrocytes close a critical period During the visual critical period, brain circuits are rewired to adjust to sensory input. Closure of the critical period stabilizes the circuits. Looking at development in the mouse visual cortex, Ribot et al. found that astrocytes increase their expression of the gap junction channel subunit connexin 30, which in turn inhibits expression of a matrix-degrading enzyme (see the Perspective by Kofuji and Araque). As the matrix stabilizes, inhibitory interneurons mature, and the unusual flexibility of the critical period comes to an end. Science , abf5273, this issue p. 77 ; see also abj6745, p. 29
17

An exon DNA element modulates heterochromatin spreading in the master regulator for sexual commitment in malaria parasites

Carlos Cordón-Obras et al.Jun 26, 2020
+4
C
A
C
ABSTRACT Heterochromatin is essential in all eukaryotes to maintain genome integrity, long-term gene repression and to help chromosome segregation during mitosis. However, heterochromatin regions must be restricted by boundary elements to avoid its spreading over actively transcribed loci. In Plasmodium falciparum , facultative heterochromatin is important to regulate parasite virulence, antigenic variation and transmission. However, the underlying molecular mechanisms regulating repressive regions remain unknown. To investigate this topic, we chose the ap2-g gene, which forms a strictly delimited and independent heterochromatin island. Using electrophoretic motility shift assay (EMSA) we identified an ap2-g exon element at the 3’ end binding nuclear protein complexes. Upon replacement of this region by a gfp gene, we observed a shift in the heterochromatin boundary resulting in HP1 (Heterochromatin Protein 1) spreading over ∼2 additional kb downstream. We used this DNA element to purify candidate proteins followed by proteomic analysis. The identified complexes were found to be enriched in RNA-binding proteins, pointing to a potential role of RNA in the regulation of the ap2-g 3’ heterochromatin boundary. Our results provide insight into the unexplored topic of heterochromatin biology in P. falciparum and identify a DNA element within the master regulator of sexual commitment modulating heterochromatin spreading.
17
Citation1
0
Save
0

Astrocytes close the critical period for visual plasticity

Jérôme Ribot et al.Oct 2, 2020
+13
A
K
J
Summary paragraph Brain postnatal development is characterized by critical periods of experience-dependent remodeling 1,2 . Termination of these periods of intense plasticity is associated with settling of neuronal circuits, allowing for efficient information processing 3 . Failure to end critical periods thus results in neurodevelopmental disorders 4,5 . Yet, the cellular processes defining the timing of these developmental periods remain unclear. Here we show in the mouse visual cortex that astrocytes control the closure of the critical period. We uncover a novel underlying pathway involving regulation of the extracellular matrix that allows interneurons maturation via an unconventional astroglial connexin signaling. We find that timing of the critical period closure is controlled by a marked developmental upregulation of the astroglial protein connexin 30 that inhibits expression of the matrix degrading enzyme MMP9 through the RhoA-GTPase signaling pathway. Our results thus demonstrate that astrocytes not only influence activity and plasticity of single synapses, but are also key elements in the experience-dependent wiring of brain developing circuits. This work, by revealing that astrocytes promote the maturation of inhibitory circuits, hence provide a new cellular target to alleviate malfunctions associated to impaired closure of critical periods.
0

SILAKin: A novel high throughput SILAC and mass spectrometry-based assay to identify the substratome of kinases secreted by pathogens

Despina Smirlis et al.May 5, 2021
+5
V
F
D
ABSTRACT Protein phosphorylation is one of the most important reversible post-translational modifications. It affects every cellular process including differentiation, metabolism and cell cycle. Eukaryotic protein kinases (ePK) catalyse the transfer of a phosphate from ATP onto proteins, which regulates fast changes in protein activity, structure or subcellular localisation. The systematic identification of substrates is thus crucial to characterise the functions of kinases and determine the pathways they regulate, and even more so when studying the impact of pathogens-excreted kinases on the host cell signal transduction. Several strategies and approaches have been used to identify substrates, but all show important limitations thus calling for the development of new efficient and more convenient approaches for kinase substrate identification. Herein, we present SILAkin, a novel and easy method to identify substrates that is applicable to most kinases. It combines phosphatase treatment, pulse heating, in vitro kinase assay (IVKA) and SILAC (Stable Isotope Labeling with Amino acids in Cell culture)-based quantitative mass spectrometry (MS). We developed SILAkin using the Leishmania casein kinase 1 (L-CK1.2) as experimental model. Leishmania , an intracellular parasite causing Leishmaniasis, releases L-CK1.2 in its host cell. Applying this novel assay allowed us to gain unprecedented insight into host-pathogen interactions through the identification of host substrates phosphorylated by pathogen-excreted kinases. We identified 225 substrates, including 85% previously unknown that represent novel mammalian CK1 targets, and defined a novel CK1 phosphorylation motif. The substratome was validated experimentally by L-CK1.2 and human CK1δ, demonstrating the efficiency of SILAkin to identify new substrates and revealing novel regulatory pathways. Finally, SILAkin was instrumental in highlighting host pathways potentially regulated by L-CK1.2 in Leishmania- infected host cells, described by the GO terms ‘viral & symbiotic interaction’, ‘apoptosis’, ‘actin cytoskeleton organisation’, and ‘RNA processing and splicing’. SILAkin thus can generate important mechanistic insights into the signalling of host subversion by these parasites and other microbial pathogen adapted for intracellular survival.
2

The functional specificity of CDC42 isoforms is caused by their distinct subcellular localization

Yamini Ravichandran et al.Feb 27, 2023
+7
B
K
Y
Abstract The small G-protein CDC42 is an evolutionary conserved polarity protein and a key regulator of numerous polarized cell functions, including directed cell migration. In vertebrates, alternative splicing gives rise to two CDC42 proteins: the ubiquitously expressed isoform (CDC42u) and the brain isoform (CDC42b), whose specific roles are not fully elucidated. The two isoforms only differ in their carboxy-terminal sequence, which includes the CAAX motif essential for CDC42 interaction with membrane. Here we show that these divergent sequences do not directly affect the range of CDC42’s potential binding partners, but indirectly influence CDC42-driven signaling by controlling the specific subcellular localization of the two isoforms. In astrocytes and neural precursors, which naturally express both variants, CDC42u is mainly cytosolic and associates with the leading-edge plasma membrane of migrating cells where it recruits the Par6-PKCζ complex to fulfill its polarity function. In contrast, CDC42b mainly localizes to intracellular membrane compartments, where it interacts with N-WASP. CDC42b does not participate in cell polarization but embodies the major isoform regulating endocytosis. Both CDC42 isoforms act in concert by contributing their specific functions to promote chemotaxis of neural precursors, demonstrating that the expression pattern of the two isoforms is decisive for the tissue-specific behavior of cells.