Human Papillomavirus (HPV) associated oral disease continues to increase, both in the context of immune competence and of immune suppression. There are few models of oral HPV infection and current models are laborious. We hypothesized that differentiated oral epithelial cells could support the HPV life cycle. Clinical HPV16 cloned episomes were introduced into differentiated oral epithelial cells (OKF6tert1). Viral and cellular gene expression was assessed in the presence or absence of sodium butyrate, a differentiating agent that moved the cells to full terminal differentiation. Detection of keratin 10, cross-linked involucrin, and loricrin in the presence and absence of sodium butyrate confirmed terminal differentiation. Increasing sodium butyrate concentrations in the absence of HPV, were associated with decreased suprabasal markers and increased terminal differentiation markers. However, in the presence of HPV and of increasing sodium butyrate concentrations, both mitotic and suprabasal markers were increased and the terminal differentiation marker, loricrin, decreased. In this unique differentiated state, early and late viral gene products were detected including spliced mRNAs for E6*, E1^E4, and L1. E7 and L1 proteins were detected. The ratio of late (E1^E4) to early (E6/E7) transcripts in HPV16+ OKF6tert1 cells was distinct compared to HPV16+ C33a cells. Consistent with permissive HPV replication, DNA damage responses (phospho-chk2, gamma-H2AX), HPV E2-dependent LCR transactivation, and DNase-resistant particles were detected and visualized by transmission electron microscopy. In sum, monolayers of differentiated immortalized oral epithelial cells supported the full HPV life cycle. HPV may optimize the differentiation state of oral epithelial cells to facilitate its replication.