GD
Guillaume Dalmasso
Author with expertise in Diversity and Function of Gut Microbiome
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
2,583
h-index:
42
/
i10-index:
67
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli

Cayetano Pleguezuelos‐Manzano et al.Feb 27, 2020
Various species of the intestinal microbiota have been associated with the development of colorectal cancer1,2, but it has not been demonstrated that bacteria have a direct role in the occurrence of oncogenic mutations. Escherichia coli can carry the pathogenicity island pks, which encodes a set of enzymes that synthesize colibactin3. This compound is believed to alkylate DNA on adenine residues4,5 and induces double-strand breaks in cultured cells3. Here we expose human intestinal organoids to genotoxic pks+ E. coli by repeated luminal injection over five months. Whole-genome sequencing of clonal organoids before and after this exposure revealed a distinct mutational signature that was absent from organoids injected with isogenic pks-mutant bacteria. The same mutational signature was detected in a subset of 5,876 human cancer genomes from two independent cohorts, predominantly in colorectal cancer. Our study describes a distinct mutational signature in colorectal cancer and implies that the underlying mutational process results directly from past exposure to bacteria carrying the colibactin-producing pks pathogenicity island. Organoids derived from human intestinal cells that are co-cultured with bacteria carrying the genotoxic pks+ island develop a distinct mutational signature associated with colorectal cancer.
0
Citation717
0
Save
0

Orally delivered thioketal nanoparticles loaded with TNF-α–siRNA target inflammation and inhibit gene expression in the intestines

David Wilson et al.Oct 10, 2010
Small interfering RNAs (siRNAs) directed against proinflammatory cytokines have the potential to treat numerous diseases associated with intestinal inflammation; however, the side-effects caused by the systemic depletion of cytokines demands that the delivery of cytokine-targeted siRNAs be localized to diseased intestinal tissues. Although various delivery vehicles have been developed to orally deliver therapeutics to intestinal tissue, none of these strategies has demonstrated the ability to protect siRNA from the harsh environment of the gastrointestinal tract and target its delivery to inflamed intestinal tissue. Here, we present a delivery vehicle for siRNA, termed thioketal nanoparticles (TKNs), that can localize orally delivered siRNA to sites of intestinal inflammation, and thus inhibit gene expression in inflamed intestinal tissue. TKNs are formulated from a polymer, poly-(1,4-phenyleneacetone dimethylene thioketal), that degrades selectively in response to reactive oxygen species (ROS). Therefore, when delivered orally, TKNs release siRNA in response to the abnormally high levels of ROS specific to sites of intestinal inflammation. Using a murine model of ulcerative colitis, we demonstrate that orally administered TKNs loaded with siRNA against the proinflammatory cytokine tumour necrosis factor-alpha (TNF-α) diminish TNF-α messenger RNA levels in the colon and protect mice from ulcerative colitis.
0

Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype

Antony Cougnoux et al.Mar 21, 2014

Background

 Escherichia coli strains harbouring the pks island (pksE. coli) are often seen in human colorectal tumours and have a carcinogenic effect independent of inflammation in an AOM/IL-10−/− (azoxymethane/interleukin) mouse model. 

Objective

 To investigate the mechanism sustaining pksE. coli-induced carcinogenesis. 

Method

 Underlying cell processes were investigated in vitro and in vivo (xenograft model) using intestinal epithelial cells infected by pksE. coli or by an isogenic mutant defective for pks (pks− E. coli). The results were supported by data obtained from an AOM/DSS (azoxymethane/dextran sodium sulphate) colon cancer mouse model and from human colon cancer biopsy specimens colonised by pksE. coli or pks− E. coli

Results

 Colibactin-producing E. coli enhanced tumour growth in both xenograft and AOM/DSS models. Growth was sustained by cellular senescence (a direct consequence of small ubiquitin-like modifier (SUMO)-conjugated p53 accumulation), which was accompanied by the production of hepatocyte growth factor (HGF). The underlying mechanisms involve microRNA-20a-5p, which targets SENP1, a key protein regulating p53 deSUMOylation. These results are consistent with the expression of SENP1, microRNA-20a-5p, HGF and phosphorylation of HGF receptor found in human and mouse colon cancers colonised by pksE. coli

Conclusion

 These data reveal a new paradigm for carcinogenesis, in which colibactin-induced senescence has an important role.
0

Temporal and Spatial Analysis of Clinical and Molecular Parameters in Dextran Sodium Sulfate Induced Colitis

Yutao Yan et al.Jun 26, 2009
Background Inflammatory bowel diseases (IBD), including mainly ulcerative colitis (UC) and Crohn's disease (CD), are inflammatory disorders of the gastrointestinal tract caused by an interplay of genetic and environmental factors. Murine colitis model induced by Dextran Sulfate Sodium (DSS) is an animal model of IBD that is commonly used to address the pathogenesis of IBD as well as to test efficacy of therapies. In this study we systematically analyzed clinical parameters, histological changes, intestinal barrier properties and cytokine profile during the colitic and recovery phase. Methods C57BL/6 mice were administered with 3.5% of DSS in drinking water for various times. Clinical and histological features were determined using standard criteria. Myeloperoxidase (MPO) activity, transepithelial permeability and proinflammatory mediators were determined in whole colon or proximal and distal parts of colon. Results As expected after administration of DSS, mice manifest loss of body weight, shortening of colon length and bloody feces. Histological manifestations included shortening and loss of crypts, infiltration of lymphocytes and neutrophil, symptoms attenuated after DSS withdrawal. The MPO value, as inflammation indicator, also increases significantly at all periods of DSS treatment, and even after DSS withdrawal, it still held at very high levels. Trans-mucosal permeability increased during DSS treatment, but recovered to almost control level after DSS withdrawal. The production of proinflammatory mediators by colonic mucosa were enhanced during DSS treatment, and then recovered to pre-treated level after DSS withdrawal. Finally, enhanced expression of proinflammatory mediators also revealed a different profile feature in proximal and distal parts of the colon. Conclusion Experimental colitis induced by DSS is a good animal model to study the mechanisms underlying the pathogenesis and intervention against IBD, especially UC.
0
Citation377
0
Save
0

The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment

Guillaume Dalmasso et al.Sep 3, 2014
The gut microbiota is suspected to promote colorectal cancer (CRC). Escherichia coli are more frequently found in CCR biopsies than in healthy mucosa; furthermore, the majority of mucosa-associated E. coli isolated from CCR harbors the pks genomic island (pks+ E. coli) that is responsible for the synthesis of colibactin, a genotoxic compound. We have recently reported that transient contact of a few malignant cells with colibactin-producing E. coli increases tumor growth in a xenograft mouse model. Growth is sustained by cellular senescence that is accompanied by the production of growth factors. We demonstrated that cellular senescence is a consequence of the pks+ E. coli-induced alteration of p53 SUMOylation, an essential post-translational modification in eukaryotic cells. The underlying mechanisms for this process involve the induction of miR-20a-5p expression, which targets SENP1, a key protein in the regulation of the SUMOylation process. These results are consistent with the expression of SENP1, miR-20a-5p and growth factors that are observed in a CRC mouse model and in human CCR biopsies colonized by pks+ E. coli. Overall, the data reveal a new paradigm for carcinogenesis in which pks+ E. coli infection induces cellular senescence characterized by the production of growth factors that promote the proliferation of uninfected cells and, subsequently, tumor growth.
0
Citation238
0
Save
2

The Colibactin-ProducingEscherichia colialters the tumor microenvironment to immunosuppressive lipid overload facilitating colorectal cancer progression and chemoresistance

Nilmara Alves et al.Mar 14, 2023
ABSTRACT Intratumoral bacteria locally contribute to cellular and molecular tumor heterogeneity that support cancer stemness through poorly understood mechanisms. This study aims to explore how Colibactin-producing Escherichia coli (CoPEC) flexibly alters the tumor microenvironment in right-sided colorectal cancer (CRC). Metabolomic and transcriptomic spatial profiling uncovered that CoPEC colonization establishes a high-glycerophospholipid microenvironment within the tumor that is conducive to exhaustion of infiltrated CD8 + T cell and has a lowered prognostic value in right-sided CRC. Mechanistically, the accumulation of lipid droplets in infected cancer cells relied on the production of colibactin as a measure to limit genotoxic stress and supply with sufficient energy for sustaining cell survival and lowering tumor immunogenicity. Specifically, a heightened phosphatidylcholine remodeling of CoPEC-infected cancer cells by the enzyme of the Land’s cycle coincided with a lowered accumulation of proapoptotic ceramide and lysophosphatidylcholine. Consequently, a reduced infiltration of CD8 + T lymphocytes that produce the cytotoxic cytokines IFN-γ was found where invading bacteria have been geolocated. By contrast, such an immunosuppressive dysmetabolic process was not observed when human colon cancer cells were infected with the mutant strain that did not produce colibactin (11G5δClbQ). This work revealed an unexpected property of CoPEC on lipid overload within tumors that could locally provide an inflammatory environment leading to immunosuppressive mechanisms and tumor expansion. This may pave the way for improving chemoresistance and subsequently outcome of CRC patients who are colonized by CoPEC.
0

ATG16L1 in myeloid cells limits colorectal tumor growth in  Apc Min/+  mice infected with colibactin-producing Escherichia coli via decreasing inflammasome activation

Laurène Salesse et al.May 31, 2024
Escherichia coli strains producing the genotoxin colibactin, designated as CoPEC (colibactin-producing E. coli), have emerged as an important player in the etiology of colorectal cancer (CRC). Here, we investigated the role of macroautophagy/autophagy in myeloid cells, an important component of the tumor microenvironment, in the tumorigenesis of a susceptible mouse model infected with CoPEC. For that, a preclinical mouse model of CRC, the ApcMin/+ mice, with Atg16l1 deficiency specifically in myeloid cells (ApcMin/+/Atg16l1[∆MC]) and the corresponding control mice (ApcMin/+), were infected with a clinical CoPEC strain 11G5 or its isogenic mutant 11G5∆clbQ that does not produce colibactin. We showed that myeloid cell-specific Atg16l1 deficiency led to an increase in the volume of colonic tumors in ApcMin/+ mice under infection with 11G5, but not with 11G5∆clbQ. This was accompanied by increased colonocyte proliferation, enhanced inflammasome activation and IL1B/IL-1β secretion, increased neutrophil number and decreased total T cell and cytotoxic CD8+ T cell numbers in the colonic mucosa and tumors. In bone marrow-derived macrophages (BMDMs), compared to uninfected and 11G5∆clbQ-infected conditions, 11G5 infection increased inflammasome activation and IL1B secretion, and this was further enhanced by autophagy deficiency. These data indicate that ATG16L1 in myeloid cells was necessary to inhibit colonic tumor growth in CoPEC-infected ApcMin/+ mice via inhibiting colibactin-induced inflammasome activation and modulating immune cell response in the tumor microenvironment.