Abstract In order to explore the mechanism of general anesthesia emergence, based on the common clinical phenomenon-delayed emergence, we explore the role of 5-hydroxytryptamine (5-HT) neurons in the dorsal raphe nucleus in promoting awakening from sevoflurane anesthesia in mice model. In this study, C57BL/6J male mice were selected to specifically activate or inhibit 5-HT neurons in the dorsal raphe nucleus (DRN) and different 5-HT receptors by intraperitoneal, lateral ventricle, intranuclear or DRN injection of agonists/antagonists and optogenetics during the sevoflurane anesthesia to record and observe the anesthesia induction and emergence time of mice. Through intraventricular infusion and intranuclear microinjection of 5-HT and the agonists or antagonists of different 5-HT receptors, our data showed that 5-HT and 5-HT1A and 2A/C receptors, especially 5-HT1A receptor, are involved in the regulation of delayed awakening mediated by DRN 5-HT neurons. This can provide a reliable theoretical basis as well as potential targets for clinical intervention to prevent delayed emergence and some postoperative risks. Graphical Abstract