JB
Jordi Beas
Author with expertise in Global Challenge of Antibiotic Resistance in Bacteria
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
303
h-index:
6
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

The AAA+ ATPase RavA-ViaA complex sensitizes Escherichia coli to aminoglycosides under anaerobic low energy conservation conditions

Jessica Khoury et al.Jan 14, 2022
Aminoglycosides have been used against Gram-negative bacteria for decades. Yet, uncertainties remain about various aspects of their uptake mechanism. Moreover their killing efficiency is well known to vary as a function of growth conditions and types of metabolism used by the targeted bacterium. Here we show that RavA, an AAA+ ATPase from the MoxR subfamily, associated with its VWA-containing partner, ViaA sensitize E. coli to lethal concentrations of AG, including gentamycin (Gm) and tobramycin, but not of antibiotics of other classes. We show this sensitizing effect to be due to enhanced Gm uptake in a proton motive force dependent manner. We evaluated the influence of RavA ViaA throughout a series of growth conditions, including aerobiosis and anaerobiosis. This led us to observe that the sensitizing effect of RavA ViaA varies with the respiratory chain used, i.e. RavA ViaA influence was prominent in the absence of exogenous electron acceptor or with fumarate, i.e. in poor energy conservation conditions, and dispensable in the presence of nitrate or oxygen, i.e. in high level of energy conservation. We propose RavA ViaA to be able to sense energetic state of the cell and to be used under low energy conditions for facilitating uptake of chemicals across the membrane, including Gm.
1

In Campylobacter jejuni a new type of chaperone receives heme b from ferrochelatase

Jordi Beas et al.Mar 30, 2023
Intracellular heme formation and trafficking are fundamental processes in living organisms. Three biogenesis pathways are used by bacteria and archaea to produce iron protoporphyrin IX (heme b) that diverge after the formation of the common intermediate uroporphyrinogen III (uro'gen III). In this work, we identify and provide a detailed characterization of the enzymes involved in the transformation of uro'gen III into heme. We show that in this organism operates the protoporphyrin-dependent pathway (PPD pathway), in which the last reaction is the incorporation of ferrous iron into the porphyrin ring by the ferrochelatase enzyme. In general, following this final reaction, little is known about how the formed heme b reaches the target proteins. In particular, the chaperons that are thought to be required to traffic heme for incorporation into hemeproteins to avoid the cytotoxicity associated to free heme, remain largely unidentified. We identified in C. jejuni a chaperon-like protein, named CgdH2, that binds heme with a dissociation constant of 4.9 ± 1.0 μM, a binding that is impaired upon mutation of residues histidine 45 and 133. We show that C. jejuni CgdH2 establishes protein-protein interactions with ferrochelatase, which should enable for the observed transfer of heme from ferrochelatase to CgdH2. Phylogenetic analysis revealed that C. jejuni CgdH2 is evolutionarily distinct from the currently known chaperones. Therefore, CgdH2 is a novel chaperone and the first protein identified as an acceptor of the intracellularly formed heme, thus enlarging our understanding of bacterial heme homeostasis.