MC
Mark Chong
Author with expertise in MicroRNA Regulation in Cancer and Development
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(89% Open Access)
Cited by:
5,495
h-index:
33
/
i10-index:
44
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function

Liang Zhou et al.Mar 26, 2008
The cytokine TFG-β contributes to the differentiation of both regulatory T cells and TH17 cells. This paper shows that in intestinal lamina propria cell lineage differentiation depends on the local TFG-β concentration. T helper cells that produce IL-17 (TH17 cells) promote autoimmunity in mice and have been implicated in the pathogenesis of human inflammatory diseases. At mucosal surfaces, TH17 cells are thought to protect the host from infection, whereas regulatory T (Treg) cells control immune responses and inflammation triggered by the resident microflora1,2,3,4,5. Differentiation of both cell types requires transforming growth factor-β (TGF-β), but depends on distinct transcription factors: RORγt (encoded by Rorc(γt)) for TH17 cells and Foxp3 for Treg cells6,7,8. How TGF-β regulates the differentiation of T cells with opposing activities has been perplexing. Here we demonstrate that, together with pro-inflammatory cytokines, TGF-β orchestrates TH17 cell differentiation in a concentration-dependent manner. At low concentrations, TGF-β synergizes with interleukin (IL)-6 and IL-21 (refs 9–11) to promote IL-23 receptor (Il23r) expression, favouring TH17 cell differentiation. High concentrations of TGF-β repress IL23r expression and favour Foxp3+ Treg cells. RORγt and Foxp3 are co-expressed in naive CD4+ T cells exposed to TGF-β and in a subset of T cells in the small intestinal lamina propria of the mouse. In vitro, TGF-β-induced Foxp3 inhibits RORγt function, at least in part through their interaction. Accordingly, lamina propria T cells that co-express both transcription factors produce less IL-17 (also known as IL-17a) than those that express RORγt alone. IL-6, IL-21 and IL-23 relieve Foxp3-mediated inhibition of RORγt, thereby promoting TH17 cell differentiation. Therefore, the decision of antigen-stimulated cells to differentiate into either TH17 or Treg cells depends on the cytokine-regulated balance of RORγt and Foxp3.
0
Citation1,743
0
Save
0

Plasticity of CD4+ T Cell Lineage Differentiation

Liang Zhou et al.May 1, 2009
The differentiation of naive CD4+ T cells into lineages with distinct effector functions has been considered to be an irreversible event. T helper type 1 (Th1) cells stably express IFN-γ, whereas Th2 cells express IL-4. The discovery and investigation of two other CD4+ T cell subsets, induced regulatory T (iTreg) cells and Th17 cells, has led to a rethinking of the notion that helper T cell subsets represent irreversibly differentiated endpoints. Accumulating evidence suggests that CD4+ T cells, particularly iTreg and Th17 cells, are more plastic than previously appreciated. It appears that expression of Foxp3 by iTreg cells or IL-17 by Th17 cells may not be stable and that there is a great degree of flexibility in their differentiation options. Here, we will discuss recent findings that demonstrate the plasticity of CD4+ T cell differentiation and the biological implications of this flexibility. The differentiation of naive CD4+ T cells into lineages with distinct effector functions has been considered to be an irreversible event. T helper type 1 (Th1) cells stably express IFN-γ, whereas Th2 cells express IL-4. The discovery and investigation of two other CD4+ T cell subsets, induced regulatory T (iTreg) cells and Th17 cells, has led to a rethinking of the notion that helper T cell subsets represent irreversibly differentiated endpoints. Accumulating evidence suggests that CD4+ T cells, particularly iTreg and Th17 cells, are more plastic than previously appreciated. It appears that expression of Foxp3 by iTreg cells or IL-17 by Th17 cells may not be stable and that there is a great degree of flexibility in their differentiation options. Here, we will discuss recent findings that demonstrate the plasticity of CD4+ T cell differentiation and the biological implications of this flexibility.
0
Citation1,460
0
Save
0

A dicer-independent miRNA biogenesis pathway that requires Ago catalysis

Sihem Cheloufi et al.Apr 27, 2010
The nucleolytic activity of animal Argonaute proteins is deeply conserved, despite its having no obvious role in microRNA-directed gene regulation. In mice, Ago2 (also known as Eif2c2) is uniquely required for viability, and only this family member retains catalytic competence. To investigate the evolutionary pressure to conserve Argonaute enzymatic activity, we engineered a mouse with catalytically inactive Ago2 alleles. Homozygous mutants died shortly after birth with an obvious anaemia. Examination of microRNAs and their potential targets revealed a loss of miR-451, a small RNA important for erythropoiesis. Though this microRNA is processed by Drosha (also known as Rnasen), its maturation does not require Dicer. Instead, the pre-miRNA becomes loaded into Ago and is cleaved by the Ago catalytic centre to generate an intermediate 3′ end, which is then further trimmed. Our findings link the conservation of Argonaute catalysis to a conserved mechanism of microRNA biogenesis that is important for vertebrate development. The class of small RNAs called microRNAs, which function in regulating gene expression, are transcribed as longer sequences that are processed to make the mature form. Two nucleases, Drosha and Dicer, act sequentially to trim microRNAs to size. Now a subset of miRNAs, typified by the miR-451 protein involved in erythropoiesis, is shown to be processed independently of Dicer. Instead, secondary cleavage is carried out by Ago2, an Argonaute protein that is part of the complex that aligns the miRNA and messenger RNA. The nucleolytic activity of animal Argonaute proteins is deeply conserved, despite it having no obvious role in microRNA-directed gene regulation. This new finding links the conservation of Argonaute catalysis to a conserved mechanism of microRNA biogenesis that is important for vertebrate development. MicroRNAs, which regulate gene expression, are transcribed as longer sequences that are processed to produce the mature form. Two nuclease enzymes, Drosha and Dicer, are known to act sequentially to trim the microRNA to size. Here, however, a subset of microRNAs that includes miR-451, important for erythropoiesis, is found to be processed independently of Dicer. Rather, the Argonaute protein — part of the complex that aligns microRNA and messenger RNA — carries out the secondary cleavage.
0
Citation1,032
0
Save
0

DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration

Hiroki Kaneko et al.Feb 6, 2011
Geographic atrophy (GA), an untreatable advanced form of age-related macular degeneration, results from retinal pigmented epithelium (RPE) cell degeneration. Here we show that the microRNA (miRNA)-processing enzyme DICER1 is reduced in the RPE of humans with GA, and that conditional ablation of Dicer1, but not seven other miRNA-processing enzymes, induces RPE degeneration in mice. DICER1 knockdown induces accumulation of Alu RNA in human RPE cells and Alu-like B1 and B2 RNAs in mouse RPE. Alu RNA is increased in the RPE of humans with GA, and this pathogenic RNA induces human RPE cytotoxicity and RPE degeneration in mice. Antisense oligonucleotides targeting Alu/B1/B2 RNAs prevent DICER1 depletion-induced RPE degeneration despite global miRNA downregulation. DICER1 degrades Alu RNA, and this digested Alu RNA cannot induce RPE degeneration in mice. These findings reveal a miRNA-independent cell survival function for DICER1 involving retrotransposon transcript degradation, show that Alu RNA can directly cause human pathology, and identify new targets for a major cause of blindness. Kaneko et al. report that geographic atrophy, a form of age-related blindness caused by cell death in the retinal pigmented epithelium, is associated with loss of activity of DICER1, a microRNA-processing enzyme. But cell death is not linked to microRNA processing. Rather, the absence of DICER1 allows pathological Alu repeat sequence RNAs to accumulate. DICER1 binds to and degrades Alu RNA to prevent retinal degeneration. This work suggests a novel therapeutic target for an important cause of blindness. In geographic atrophy, a type of macular degeneration, retinal pigmented epithelium (RPE) cells die. This paper finds that DICER1, which processes miRNA precursors, is reduced in RPE from individuals with geographic atrophy. Cell death is not due to loss of miRNA processing, however; rather, the absence of DICER1 allows accumulation of pathological Alu repeat sequence RNAs. This work reveals a novel function of Dicer in degrading Alu RNAs.
0
Citation588
0
Save
1

Distinct subpopulations of DN1 thymocytes exhibit preferential γδ T lineage potential

Seungyoul Oh et al.Feb 28, 2022
Abstract The αβ and γδ T cell lineages are both are thought to differentiate in the thymus from common uncommitted progenitors. The earliest stage of T cell development is known as known as CD4 - CD8 - double negative 1 (DN1). These thymocytes have previously been revealed to be a heterogenous mixture of cells, which of only the CD117 + fraction have been proposed to be true T cell progenitors that progress to the DN2 and DN3 thymocyte stages, at which point the development of the αβ and γδ T cell lineages diverge. However, recently, it has been shown that at least some γδ T cells are actually derived from a subset of CD117 - DN thymocytes. Along with other ambiguities, this suggests that T cell development may not be as straightforward as previously thought. To better understand early T cell development, particularly the heterogeneity of DN1 thymocytes, we performed single cell RNA sequence (scRNAseq) of mouse DN and γδ thymocytes and show that the various DN stages are indeed comprised of transcriptionally diverse subpopulations of cells. We also show that multiple subpopulations of DN1 thymocytes exhibit preferential development towards the γδ lineage. Furthermore, specific γδ-primed DN1 subpopulations preferentially develop into IL-17 or IFNγ-producing γδ T cells. We show that DN1 subpopulations that only give rise to IL-17-producing γδ T cells already express many of the transcription factors associated with type 17 immune cell differentiation, while the DN1 subpopulations that can give rise to IFNγ-producing γδ T cell already express transcription factors associated with type 1 immune cell differentiation.
1

Non-canonical RNA substrates of Drosha lack many of the conserved features found in primary microRNA stem-loops

Karen Gu et al.Mar 31, 2023
The RNase III enzyme Drosha has a central role in microRNA (miRNA) biogenesis, where it is required to release the stem-loop intermediate from primary (pri)-miRNA transcripts. However, it can also cleave stem-loops embedded within messenger (m)RNAs. This destabilizes the mRNA causing target gene repression and appears to occur primarily in stem cells. While pri-miRNA stem-loops have been extensively studied, such non-canonical substrates of Drosha have yet to characterized in detail. In this study, we employed high-throughput sequencing to capture all polyA-tailed RNAs that are cleaved by Drosha in mouse embryonic stem cells (ESCs) and compared the features of non-canonical versus miRNA stem-loop substrates. First, mRNA substrates are less efficiently processed than miRNA stem-loops. Sequence and structural analyses revealed that these mRNA substrates are also less stable and more likely to fold into alternative structures than miRNA stem-loops. Moreover, they lack the sequence and structural motifs found in miRNAs stem-loops that are required for precise cleavage. Notably, we discovered a non-canonical Drosha substrate that is cleaved in an inverse manner, which is a process that is normally inhibited by features in miRNA stem-loops. Our study thus provides valuable insights into the recognition of non-canonical targets by Drosha.