SH
Sabine Heiland
Author with expertise in Gliomas
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
20
(65% Open Access)
Cited by:
3,220
h-index:
64
/
i10-index:
245
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Gadolinium Retention in the Dentate Nucleus and Globus Pallidus Is Dependent on the Class of Contrast Agent

Alexander Radbruch et al.Apr 7, 2015
Purpose To compare changes in signal intensity (SI) ratios of the dentate nucleus (DN) and the globus pallidus (GP) to those of other structures on unenhanced T1-weighted magnetic resonance (MR) images between linear and macrocyclic gadolinium-based contrast agents (GBCAs). Materials and Methods The study was approved by the ethical committee of the University of Heidelberg (reference no. S-324/2014). Owing to the retrospective character of the study, the ethical committee did not require any written informed consent. Two groups of 50 patients who underwent at least six consecutive MR imaging examinations with the exclusive use of either a linear GBCA (gadopentetate dimeglumine) or a macrocyclic GBCA (gadoterate meglumine) were analyzed retrospectively. The difference in mean SI ratios of DN to pons and GP to thalamus on unenhanced T1-weighted images from the last and first examinations was calculated. One-sample and independent-sample t tests were used to assess the difference in SI ratios for both groups, and regression analysis was performed to account for potential confounders. Results The SI ratio difference in the linear group was greater than 0 (mean DN difference ± standard deviation, 0.0407 ± 0.0398 [P < .001]; GP, 0.0287 ± 0.0275 [P < .001]) and significantly larger (DN, P < .001 and standardized difference of 1.16; GP, P < .001 and standardized difference of 0.81) than that in the macrocyclic group, which did not differ from 0 (DN, 0.0016 ± 0.0266 [P = .680]; GP, 0.0031 ± 0.0354 [P = .538]). The SI ratio difference between the last and first examinations for the DN remained significantly different between the two groups in the regression analysis (P < .001). Conclusion This study indicates that an SI increase in the DN and GP on T1-weighted images is caused by serial application of the linear GBCA gadopentetate dimeglumine but not by the macrocyclic GBCA gadoterate meglumine. Clinical implications of this observation remain unclear. © RSNA, 2015
0

Stroke Magnetic Resonance Imaging Is Accurate in Hyperacute Intracerebral Hemorrhage

Jochen Fiebach et al.Jan 27, 2004
Although modern multisequence stroke MRI protocols are an emerging imaging routine for the diagnostic assessment of acute ischemic stroke, their sensitivity for intracerebral hemorrhage (ICH), the most important differential diagnosis, is still a matter of debate. We hypothesized that stroke MRI is accurate in the detection of ICH. To evaluate our hypotheses, we conducted a prospective multicenter trial.Stroke MRI protocols of 6 university hospitals were standardized. Images from 62 ICH patients and 62 nonhemorrhagic stroke patients, all imaged within the first 6 hours after symptom onset (mean, 3 hours 18 minutes), were analyzed. For diagnosis of hemorrhage, CT served as the "gold standard." Three readers experienced in stroke imaging and 3 final-year medical students, unaware of clinical details, separately evaluated sets of diffusion-, T2-, and T2*-weighted images. The extent and phenomenology of the hemorrhage on MRI were assessed separately.Mean patient age was 65.5 years; median National Institutes of Health Stroke Scale score was 10. The experienced readers identified ICH with 100% sensitivity (confidence interval, 97.1 to 100) and 100% overall accuracy. Mean ICH size was 17.3 mL (range, 1 to 101.5 mL). The students reached a mean sensitivity of 95.16% (confidence interval, 90.32 to 98.39).Hyperacute ICH causes a characteristic imaging pattern on stroke MRI and is detectable with excellent accuracy. Even raters with limited film-reading experience reached good accuracy. Stroke MRI alone can rule out ICH and demonstrate the underlying pathology in hyperacute stroke.
0

Automated brain extraction of multisequence MRI using artificial neural networks

Fabian Isensee et al.Aug 12, 2019
Brain extraction is a critical preprocessing step in the analysis of MRI neuroimaging studies and influences the accuracy of downstream analyses. The majority of brain extraction algorithms are, however, optimized for processing healthy brains and thus frequently fail in the presence of pathologically altered brain or when applied to heterogeneous MRI datasets. Here we introduce a new, rigorously validated algorithm (termed HD-BET) relying on artificial neural networks that aims to overcome these limitations. We demonstrate that HD-BET outperforms six popular, publicly available brain extraction algorithms in several large-scale neuroimaging datasets, including one from a prospective multicentric trial in neuro-oncology, yielding state-of-the-art performance with median improvements of +1.16 to +2.11 points for the DICE coefficient and -0.66 to -2.51 mm for the Hausdorff distance. Importantly, the HD-BET algorithm shows robust performance in the presence of pathology or treatment-induced tissue alterations, is applicable to a broad range of MRI sequence types and is not influenced by variations in MRI hardware and acquisition parameters encountered in both research and clinical practice. For broader accessibility our HD-BET prediction algorithm is made freely available (http://www.neuroAI-HD.org) and may become an essential component for robust, automated, high-throughput processing of MRI neuroimaging data.
0
Citation401
0
Save
0

Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study

Philipp Kickingereder et al.Apr 2, 2019
Background The Response Assessment in Neuro-Oncology (RANO) criteria and requirements for a uniform protocol have been introduced to standardise assessment of MRI scans in both clinical trials and clinical practice. However, these criteria mainly rely on manual two-dimensional measurements of contrast-enhancing (CE) target lesions and thus restrict both reliability and accurate assessment of tumour burden and treatment response. We aimed to develop a framework relying on artificial neural networks (ANNs) for fully automated quantitative analysis of MRI in neuro-oncology to overcome the inherent limitations of manual assessment of tumour burden. Methods In this retrospective study, we compiled a single-institution dataset of MRI data from patients with brain tumours being treated at Heidelberg University Hospital (Heidelberg, Germany; Heidelberg training dataset) to develop and train an ANN for automated identification and volumetric segmentation of CE tumours and non-enhancing T2-signal abnormalities (NEs) on MRI. Independent testing and large-scale application of the ANN for tumour segmentation was done in a single-institution longitudinal testing dataset from the Heidelberg University Hospital and in a multi-institutional longitudinal testing dataset from the prospective randomised phase 2 and 3 European Organisation for Research and Treatment of Cancer (EORTC)-26101 trial (NCT01290939), acquired at 38 institutions across Europe. In both longitudinal datasets, spatial and temporal tumour volume dynamics were automatically quantified to calculate time to progression, which was compared with time to progression determined by RANO, both in terms of reliability and as a surrogate endpoint for predicting overall survival. We integrated this approach for fully automated quantitative analysis of MRI in neuro-oncology within an application-ready software infrastructure and applied it in a simulated clinical environment of patients with brain tumours from the Heidelberg University Hospital (Heidelberg simulation dataset). Findings For training of the ANN, MRI data were collected from 455 patients with brain tumours (one MRI per patient) being treated at Heidelberg hospital between July 29, 2009, and March 17, 2017 (Heidelberg training dataset). For independent testing of the ANN, an independent longitudinal dataset of 40 patients, with data from 239 MRI scans, was collected at Heidelberg University Hospital in parallel with the training dataset (Heidelberg test dataset), and 2034 MRI scans from 532 patients at 34 institutions collected between Oct 26, 2011, and Dec 3, 2015, in the EORTC-26101 study were of sufficient quality to be included in the EORTC-26101 test dataset. The ANN yielded excellent performance for accurate detection and segmentation of CE tumours and NE volumes in both longitudinal test datasets (median DICE coefficient for CE tumours 0·89 [95% CI 0·86–0·90], and for NEs 0·93 [0·92–0·94] in the Heidelberg test dataset; CE tumours 0·91 [0·90–0·92], NEs 0·93 [0·93–0·94] in the EORTC-26101 test dataset). Time to progression from quantitative ANN-based assessment of tumour response was a significantly better surrogate endpoint than central RANO assessment for predicting overall survival in the EORTC-26101 test dataset (hazard ratios ANN 2·59 [95% CI 1·86–3·60] vs central RANO 2·07 [1·46–2·92]; p<0·0001) and also yielded a 36% margin over RANO (p<0·0001) when comparing reliability values (ie, agreement in the quantitative volumetrically defined time to progression [based on radiologist ground truth vs automated assessment with ANN] of 87% [266 of 306 with sufficient data] compared with 51% [155 of 306] with local vs independent central RANO assessment). In the Heidelberg simulation dataset, which comprised 466 patients with brain tumours, with 595 MRI scans obtained between April 27, and Sept 17, 2018, automated on-demand processing of MRI scans and quantitative tumour response assessment within the simulated clinical environment required 10 min of computation time (average per scan). Interpretation Overall, we found that ANN enabled objective and automated assessment of tumour response in neuro-oncology at high throughput and could ultimately serve as a blueprint for the application of ANN in radiology to improve clinical decision making. Future research should focus on prospective validation within clinical trials and application for automated high-throughput imaging biomarker discovery and extension to other diseases. Funding Medical Faculty Heidelberg Postdoc-Program, Else Kröner-Fresenius Foundation.
0
Citation327
0
Save
0

Hemostatic Therapy in Experimental Intracerebral Hemorrhage Associated With the Direct Thrombin Inhibitor Dabigatran

Wei Zhou et al.Oct 14, 2011
Background and Purpose— Dabigatran-etexilate (DE) recently has been approved for stroke prevention in atrial fibrillation. However, lack of effective antagonists represents a major concern in the event of intracerebral hemorrhage (ICH). The aims of the present study were to establish a murine model of ICH associated with dabigatran, and to test the efficacy of different hemostatic factors in preventing hematoma growth. Methods— In C57BL/6 mice receiving DE (4.5 or 9.0 mg/kg), in vivo and in vitro coagulation assays and dabigatran plasma levels were measured repeatedly. Thirty minutes after inducing ICH by striatal collagenase injection, mice received an intravenous injection of saline, prothrombin complex concentrate (PCC; 100 U/kg), murine fresh-frozen plasma (200 μL), or recombinant human factor VIIa (8.0 mg/kg). ICH volume was quantified on brain cryosections 24 hours later. Results— DE substantially prolonged tail vein bleeding time and ecarin clotting time for 4 hours corresponding to dabigatran plasma levels. Intracerebral hematoma expansion was observed mainly during the first 3 hours on serial T2* MRI. Anticoagulation with high doses of DE increased the hematoma volume significantly. PCC and, less consistently, fresh-frozen plasma prevented excess hematoma expansion caused by DE, whereas recombinant human factor VIIa was ineffective. Prevention of hematoma growth and reversal of tail vein bleeding time by PCC were dose-dependent. Conclusions— The study provides strong evidence that PCC and, less consistently, fresh-frozen plasma prevent excess intracerebral hematoma expansion in a murine ICH model associated with dabigatran. The efficacy and safety of this strategy must be further evaluated in clinical studies.
0

IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma

Philipp Kickingereder et al.Nov 5, 2015
Abstract The recent identification of IDH mutations in gliomas and several other cancers suggests that this pathway is involved in oncogenesis; however effector functions are complex and yet incompletely understood. To study the regulatory effects of IDH on hypoxia-inducible-factor 1-alpha ( HIF1A ), a driving force in hypoxia-initiated angiogenesis, we analyzed mRNA expression profiles of 288 glioma patients and show decreased expression of HIF1A targets on a single-gene and pathway level, strong inhibition of upstream regulators such as HIF1A and downstream biological functions such as angio- and vasculogenesis in IDH mutant tumors. Genotype/imaging phenotype correlation analysis with relative cerebral blood volume (rCBV) MRI – a robust and non-invasive estimate of tumor angiogenesis – in 73 treatment-naive patients with low-grade and anaplastic gliomas showed that a one-unit increase in rCBV corresponded to a two-third decrease in the odds for an IDH mutation and correctly predicted IDH mutation status in 88% of patients. Together, these findings (1) show that IDH mutation status is associated with a distinct angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging and (2) highlight the potential future of radiogenomics (i.e. the correlation between cancer imaging and genomic features) towards a more accurate diagnostic workup of brain tumors.
0
Citation289
0
Save
2

EphB2-dependent signaling promotes neuronal excitotoxicity and inflammation in the acute phase of ischemic stroke

Anne-Sophie Ernst et al.Feb 5, 2019
Local cerebral hypoperfusion causes ischemic stroke while driving multiple cell-specific responses including inflammation, glutamate-induced neurotoxicity mediated via NMDAR, edema formation and angiogenesis. Despite the relevance of these pathophysiological mechanisms for disease progression and outcome, molecular determinants controlling the onset of these processes are only partially understood. In this context, our study intended to investigate the functional role of EphB2, a receptor tyrosine kinase that is crucial for synapse function and binds to membrane-associated ephrin-B ligands. Cerebral ischemia was induced in Ephb2−/− mice by transient middle cerebral artery occlusion followed by different times (6, 12, 24 and 48 h) of reperfusion. Histological, neurofunctional and transcriptome analyses indicated an increase in EphB2 phosphorylation under these conditions and attenuated progression of stroke in Ephb2−/− mice. Moreover, while infiltration of microglia/macrophages and astrocytes into the peri-infarct region was not altered, expression of the pro-inflammatory mediators MCP-1 and IL-6 was decreased in these mice. In vitro analyses indicated that binding of EphB2 to astrocytic ephrin-B ligands stimulates NF-κB-mediated cytokine expression via the MAPK pathway. Further magnetic resonance imaging of the Ephb2−/− ischemic brain revealed a lower level of cytotoxic edema formation within 6 h upon onset of reperfusion. On the mechanistic level, absence of neuronal EphB2 decreased the mitochondrial Ca2+ load upon specific activation of NMDAR but not during synaptic activity. Furthermore, neuron-specific loss of ephrin-B2 reduced the extent of cerebral tissue damage in the acute phase of ischemic stroke. Collectively, EphB2 may promote the immediate response to an ischemia-reperfusion event in the central nervous system by (i) pro-inflammatory activation of astrocytes via ephrin-B-dependent signaling and (ii) amplification of NMDA-evoked neuronal excitotoxicity.
2
Citation27
1
Save
0

Assessment of Tumor Cell Invasion and Radiotherapy Response in Experimental Glioma by Magnetic Resonance Elastography

Hannah Fels‐Palesandro et al.Aug 23, 2024
Background Gliomas are highly invasive brain neoplasms. MRI is the most important tool to diagnose and monitor glioma but has shortcomings. In particular, the assessment of tumor cell invasion is insufficient. This is a clinical dilemma, as recurrence can arise from MRI‐occult glioma cell invasion. Hypothesis Tumor cell invasion, tumor growth and radiotherapy alter the brain parenchymal microstructure and thus are assessable by diffusion tensor imaging (DTI) and MR elastography (MRE). Study Type Experimental, animal model. Animal Model Twenty‐three male NMRI nude mice orthotopically implanted with S24 patient‐derived glioma cells (experimental mice) and 9 NMRI nude mice stereotactically injected with 1 μL PBS (sham‐injected mice). Field Strength/Sequence 2D and 3D T2‐weighted rapid acquisition with refocused echoes (RARE), 2D echo planar imaging (EPI) DTI, 2D multi‐slice multi‐echo (MSME) T2 relaxometry, 3D MSME MRE at 900 Hz acquired at 9.4 T (675 mT/m gradient strength). Assessment Longitudinal 4‐weekly imaging was performed for up to 4 months. Tumor volume was assessed in experimental mice (n = 10 treatment‐control, n = 13 radiotherapy). The radiotherapy subgroup and 5 sham‐injected mice underwent irradiation (3 × 6 Gy) 9 weeks post‐implantation/sham injection. MRI‐/MRE‐parameters were assessed in the corpus callosum and tumor core/injection tract. Imaging data were correlated to light sheet microscopy (LSM) and histology. Statistical Tests Paired and unpaired t ‐tests, a P ‐value ≤0.05 was considered significant. Results From week 4 to 8, a significant callosal stiffening (4.44 ± 0.22 vs. 5.31 ± 0.29 kPa) was detected correlating with LSM‐proven tumor cell invasion. This was occult to all other imaging metrics. Histologically proven tissue destruction in the tumor core led to an increased T2 relaxation time (41.65 ± 0.34 vs. 44.83 ± 0.66 msec) and ADC (610.2 ± 12.27 vs. 711.2 ± 13.42 × 10 −6 mm 2 /s) and a softening (5.51 ± 0.30 vs. 4.24 ± 0.29 kPa) from week 8 to 12. Radiotherapy slowed tumor progression. Data Conclusion MRE is promising for the assessment of key glioma characteristics. Evidence Level NA Technical Efficacy Stage 2
6

Reversible brain edema in experimental cerebral malaria is associated with transcellular blood-brain barrier disruption and delayed microhemorrhages

Jiashun Jin et al.Nov 26, 2021
Abstract Brain swelling occurs in cerebral malaria (CM) and may either reverse or result in fatal outcome. It is currently unknown how brain swelling in CM reverses, as investigations have been hampered by inadequate animal models. In this study, we show that reversible brain swelling in experimental murine cerebral malaria (ECM) can be induced reliably after single vaccination with radiation-attenuated sporozoites as revealed by in vivo high-field (9.4T) magnetic resonance imaging. Our results provide evidence that parenchymal fluid increase and consecutive brain swelling results from transcellular blood-brain barrier disruption (BBBD), as revealed by electron microscopy. This mechanism enables reversal of brain swelling but does not prevent persistent focal brain damage, evidenced by microhemorrhages, in areas of most severe BBBD. In a cohort of 27 pediatric and adult CM patients (n=4 fatal, n=23 non-fatal) two out of four fatal CM patients (50%) and 8 out of 23 non-fatal CM patients (35%) showed microhemorrhages on MRI at clinical field strength of 1.5T, emphasizing the translational potential of the experimental model. Our data suggest that targeting transcellular BBBD may represent a promising adjunct therapeutic approach in cerebral brain swelling to reduce edema and may ultimately lead to a reduced permanent brain damage and a better longtime neurological outcome. Author summary Brain swelling, which occurs in diseases such as cerebral malaria, is not necessarily fatal, and may reverse. Even upon reversal of brain swelling, neurological sequelae can still occur. The factors contributing to the reversibility of brain edema are not known, and treatment options remain therefore limited. Identifying the mechanisms leading to such reversibility could inform clinical management aimed at decreasing brain swelling and consecutive brain injury. Here we introduce a reproducible and simple animal model that allows comprehensive in vivo studies of reversible brain swelling in cerebral malaria at the peak of disease and upon recovery. We identify a specific type of blood-brain barrier disruption (BBBD) as a mechanism that occurs in brain swelling. We show that BBBD can reverse, but also highlight remaining brain damage in areas of most severe BBBD. As the ECM model introduced here bares crucial similarities to the CM in humans, our findings open strategies to study new therapeutic avenues and point to compounds that specifically target transcellular BBBD to reduce brain edema, and increase survival rates.
6
Citation2
0
Save
Load More