Transgenerational gene expression depends on both underlying DNA sequences and epigenetic modifications. The latter, which can result in transmission of variegated gene expression patterns across multiple generations without DNA alterations, has been termed epigenetic inheritance and has been documented in plants, worms, flies and mammals. Whereas transcription factors binding to cognate DNA sequence elements regulate gene expression, the molecular basis for epigenetic inheritance has been linked to histone and DNA modifications and non-coding RNA. Here we report that mutation of the CCAAT box promoter element abrogates NF-Y binding and disrupts the stable transgenerational expression of an MHC class I transgene. Transgenic mice with a mutated CCAAT box in the MHC class I transgene display variegated expression of the transgene among littermates and progeny in multiple independently derived transgenic lines. After 4 generations, CCAAT mutant transgenic lines derived from a single founder stably displayed distinct patterns of expression. Histone modifications and RNA polymerase II binding correlate with expression of CCAAT mutant transgenic lines, whereas DNA methylation and nucleosome occupancy do not. Mutation of the CCAAT box also results in changes to CTCF binding and DNA looping patterns across the transgene that correlate with expression status. These studies identify the CCAAT promoter element as a regulator of stable transgenerational gene expression such that mutation of the CCAAT box results in variegated transgenerational inheritance. Considering that the CCAAT box is present in 30% of eukaryotic promoters, this study provides insights into how fidelity of gene expression patterns is maintained through multiple generations.