DN
Dmitry Novikov
Author with expertise in Diffusion Magnetic Resonance Imaging
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
23
(52% Open Access)
Cited by:
3,394
h-index:
50
/
i10-index:
97
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Diffusion MRI noise mapping using random matrix theory

Jelle Veraart et al.Nov 24, 2015
To estimate the spatially varying noise map using a redundant series of magnitude MR images.We exploit redundancy in non-Gaussian distributed multidirectional diffusion MRI data by identifying its noise-only principal components, based on the theory of noisy covariance matrices. The bulk of principal component analysis eigenvalues, arising due to noise, is described by the universal Marchenko-Pastur distribution, parameterized by the noise level. This allows us to estimate noise level in a local neighborhood based on the singular value decomposition of a matrix combining neighborhood voxels and diffusion directions.We present a model-independent local noise mapping method capable of estimating the noise level down to about 1% error. In contrast to current state-of-the-art techniques, the resultant noise maps do not show artifactual anatomical features that often reflect physiological noise, the presence of sharp edges, or a lack of adequate a priori knowledge of the expected form of MR signal.Simulations and experiments show that typical diffusion MRI data exhibit sufficient redundancy that enables accurate, precise, and robust estimation of the local noise level by interpreting the principal component analysis eigenspectrum in terms of the Marchenko-Pastur distribution. Magn Reson Med 76:1582-1593, 2016. © 2015 International Society for Magnetic Resonance in Medicine.
0
Citation586
0
Save
0

Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue

Ileana Jelescu et al.Nov 29, 2015
The ultimate promise of diffusion MRI (dMRI) models is specificity to neuronal microstructure, which may lead to distinct clinical biomarkers using noninvasive imaging. While multi‐compartment models are a common approach to interpret water diffusion in the brain in vivo , the estimation of their parameters from the dMRI signal remains an unresolved problem. Practically, even when q space is highly oversampled, nonlinear fit outputs suffer from heavy bias and poor precision. So far, this has been alleviated by fixing some of the model parameters to a priori values, for improved precision at the expense of accuracy. Here we use a representative two‐compartment model to show that fitting fails to determine the five model parameters from over 60 measurement points. For the first time, we identify the reasons for this poor performance. The first reason is the existence of two local minima in the parameter space for the objective function of the fitting procedure. These minima correspond to qualitatively different sets of parameters, yet they both lie within biophysically plausible ranges. We show that, at realistic signal‐to‐noise ratio values, choosing between the two minima based on the associated objective function values is essentially impossible. Second, there is an ensemble of very low objective function values around each of these minima in the form of a pipe. The existence of such a direction in parameter space, along which the objective function profile is very flat, explains the bias and large uncertainty in parameter estimation, and the spurious parameter correlations: in the presence of noise, the minimum can be randomly displaced by a very large amount along each pipe. Our results suggest that the biophysical interpretation of dMRI model parameters crucially depends on establishing which of the minima is closer to the biophysical reality and the size of the uncertainty associated with each parameter. Copyright © 2015 John Wiley & Sons, Ltd.
0
Citation295
0
Save
0

Volume electron microscopy in injured rat brain validates white matter microstructure metrics from diffusion MRI

Ricardo Coronado‐Leija et al.Jan 1, 2024
Abstract Biophysical modeling of diffusion MRI (dMRI) offers the exciting potential of bridging the gap between the macroscopic MRI resolution and microscopic cellular features, effectively turning the MRI scanner into a noninvasive in vivo microscope. In brain white matter, the Standard Model (SM) interprets the dMRI signal in terms of axon dispersion, intra- and extra-axonal water fractions, and diffusivities. However, for SM to be fully applicable and correctly interpreted, it needs to be carefully evaluated using histology. Here, we perform a comprehensive histological validation of the SM parameters, by characterizing white matter (WM) microstructure in sham and injured rat brains using volume electron microscopy and ex vivo dMRI. Sensitivity is evaluated by how well each SM metric correlates with its histological counterpart, and specificity by the lack of correlation with other, non-corresponding histological features. Compared to previously developed SM estimators with constraints, our results show that SMI is the most sensitive and specific. Furthermore, we derive the functional form of the fiber orientation distribution based on its exponentially decreasing rotational invariants. This comprehensive comparison with histology may facilitate the clinical adoption of in vivo dMRI-derived SM parameters as biomarkers for neurological disorders.
Load More