HB
Hayley Bullen
Author with expertise in Malaria
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
0
h-index:
17
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Knockdown of the translocon protein EXP2, reduces growth and protein export in malaria parasites.

Sarah Charnaud et al.Sep 17, 2018
+2
H
R
S
Malaria parasites remodel their host erythrocytes to gain nutrients and avoid the immune system. Host erythrocytes are modified by hundreds of effectors proteins exported from the parasites into the host cell. Protein export is mediated by the PTEX translocon comprising five core components of which EXP2 is considered to form the putative pore that spans the vacuole membrane enveloping the parasite within its erythrocyte. To explore the function and importance of EXP2 for parasite survival in the asexual blood stage of Plasmodium falciparum we inducibly knocked down the expression of EXP2. Reduction in EXP2 expression strongly reduced parasite growth proportional to the degree of protein knockdown and tended to stall development about half way through the asexual cell cycle. Once the knockdown inducer was removed and EXP2 expression restored, parasite growth recovered dependent upon the length and degree of knockdown. To establish EXP2 function and hence the basis for growth reduction, the trafficking of an exported protein was monitored following EXP2 knockdown. This resulted in severe attenuation of protein export and is consistent with EXP2, and PTEX in general, being the conduit for export of proteins into the host compartment.
1

The Medicines for Malaria Venture Malaria Box contains inhibitors of protein secretion in Plasmodium falciparum blood stage parasites

Oliver Looker et al.May 2, 2022
+3
H
M
O
Abstract Plasmodium falciparum parasites which cause malaria, traffic hundreds of proteins into the red blood cells (RBCs) they infect. These exported proteins remodel their RBCs enabling host immune evasion through processes such as cytoadherence that greatly assist parasite survival. As resistance to all current anti-malarial compounds is rising new compounds need to be identified and those that could inhibit parasite protein secretion and export would both rapidly reduce parasite virulence and ultimately lead to parasite death. To identify compounds that inhibit protein export we used transgenic parasites expressing an exported nanoluciferase reporter to screen the Medicines for Malaria Venture Malaria box of 400 anti-malarial compounds with mostly unknown targets. The most potent inhibitor identified in this screen was MMV396797 whose application led to export inhibition of both the reporter and endogenous exported proteins. MMV396797 mediated blockage of protein export and slowed the rigidification and cytoadherence of infected RBCs - modifications which are both mediated by parasite-derived exported proteins. Overall, we have identified a new protein export inhibitor in P. falciparum whose target though unknown, could be developed into a future anti-malarial that rapidly inhibits parasite virulence before eliminating parasites from the host. Synopsis Plasmodium falciparum exports proteins into its host cell to perform a myriad of functions required for survival. We adapted an assay to screen for small molecules that inhibit protein secretion and export. Screening the 400-compound Medicines for Malaria Venture (MMV) Malaria Box uncovered several potential export inhibitors. The most promising of these compounds, MMV396797, blocked protein export at the parasite and reduced host rigidification and cytoadherence, two functions which are mediated by exported proteins.
5

PTEX helps efficiently traffic haemoglobinases to the food vacuole inPlasmodium falciparum

Thorey Jonsdottir et al.Nov 15, 2022
+8
S
B
T
Abstract A key element of Plasmodium biology and pathogenesis is the trafficking of ~10% of the parasite proteome into the host red blood cell (RBC) it infects. To cross the parasite-encasing parasitophorous vacuole membrane, exported proteins utilise a channel-containing protein complex termed the Plasmodium translocon of exported proteins (PTEX). PTEX is obligatory for parasite survival, both in vitro and in vivo , suggesting that at least some exported proteins have essential metabolic functions. However, to date only one essential PTEX-dependent process, the new permeability pathway, has been described. To identify other essential PTEX-dependant proteins/processes, we conditionally knocked down the expression of one of its core components, PTEX150, and examined which metabolic pathways were affected. Surprisingly, the food vacuole mediated process of haemoglobin (Hb) digestion was substantially perturbed by PTEX150 knockdown. Using a range of transgenic parasite lines and approaches, we show that two major Hb proteases; falcipain 2a and plasmepsin II, interact with PTEX core components, implicating the translocon’s involvement in the trafficking of Hb proteases. We propose a model where these proteases are translocated into the PV via PTEX in order to reach the cytostome, located at the parasite periphery, prior to food vacuole entry. This work offers a another mechanistic explanation for why PTEX function is essential for growth of the parasite within its host RBC. Author summary Plasmodium falciparum is the causative agent of the most severe form of malaria in humans, where the symptoms of the disease are derived from the continuous asexual replication of the parasite within the human red blood cells (RBCs) it infects. To survive within this niche, the parasite exports hundreds of parasite effector proteins across the vacuole it resides within and into the RBC. About a quarter of the exported proteins appear to be essential during the blood stage but the functions of these proteins largely remain uncharacterised. Protein export is facilitated by an essential protein complex termed the Plasmodium translocon of exported proteins (PTEX). Conditional depletion of PTEX’s core components results in rapid parasite death presumably because essential proteins do not reach their functional destination in the RBC and their associated metabolic functions cannot be performed. To uncover what these essential metabolic functions are we knocked down PTEX150, a core component of PTEX. Metabolic analysis of the knockdown parasites indicated that haemoglobin (Hb) digestion was inhibited resulting in a reduction of Hb derived peptides, which serve as an amino acid source for the parasite. We determined that knocking down HSP101, another PTEX core component, also disrupted the Hb digestion pathway. Furthermore, we provide evidence that reduction of Hb digestion might be due to the failure to efficiently deliver early acting Hb digesting proteases to the cytostome, a specialised location where vesicles of Hb are taken into the parasite. PTEX may therefore play a role in delivering Hb proteases to the cytostome.
1

A pyridyl-furan series developed from Open Global Health Library blocks red blood cell invasion and protein trafficking inPlasmodium falciparumthrough potential inhibition of the parasite’s PI4KIIIb enzyme

Dawson Ling et al.Apr 26, 2023
+10
W
A
D
ABSTRACT With resistance increasing to current antimalarial medicines, there is an urgent need to discover new drug targets and to develop new medicines against these targets. We therefore screened the Open Global Health Library of Merck KGaA, Darmstadt, Germany of 250 compounds against the asexual blood stage of the deadliest malarial parasite Plasmodium falciparum, from which eight inhibitors with low micromolar potency were found. Due to its combined potencies against parasite growth and inhibition of red blood cell invasion, the pyridyl-furan compound OGHL250, was prioritised for further optimisation. The potency of the series lead compound (WEHI-518) was improved 250-fold to low nanomolar levels against parasite blood-stage growth. Parasites selected for resistance to a related compound MMV396797, were also resistant to WEHI-518 as well as KDU731, an inhibitor of the phosphatidylinositol kinase PfPI4KIIIB, suggesting this kinase is the target of the pyridyl-furan series. Inhibition of PfPI4KIIIB blocks multiple stages of the parasite’s life cycle and other potent inhibitors are currently under preclinical development. MMV396797-resistant parasites possess an E1316D mutation in PfPKI4IIIB which clusters with known resistance mutations of other inhibitors of the kinase. Building upon earlier studies which showed that PfPI4KIIIB inhibitors block the development of the invasive merozoite parasite stage, we show that members of the pyridyl-furan series also block invasion and/or the conversion of merozoites into ring-stage intracellular parasites through inhibition of protein secretion and export into red blood cells.
1

A revised mechanism for how Plasmodium falciparum recruits and exports proteins into its erythrocytic host cell

Mikha Gabriela et al.Sep 29, 2021
+8
C
K
M
Abstract Plasmodium falciparum exports ~10% of its proteome into its host erythrocyte to modify the host cell’s physiology. The Plasmodium export element (PEXEL) motif contained within the N-terminus of most exported proteins directs the trafficking of those proteins into the erythrocyte. To reach the host cell, the PEXEL motif of exported proteins are processed by the endoplasmic reticulum (ER) resident aspartyl protease plasmepsin V. Then, following secretion into the parasite-encasing parasitophorous vacuole, the mature exported protein must be unfolded and translocated across the parasitophorous vacuole membrane by the Plasmodium translocon of exported proteins (PTEX). PTEX is a protein-conducting channel consisting of the pore-forming protein EXP2, the protein unfoldase HSP101, and structural component PTEX150. The mechanism of how exported proteins are specifically trafficked from the parasite’s ER following PEXEL cleavage to PTEX complexes on the parasitophorous vacuole membrane is currently not understood. Here, we present evidence that EXP2 and PTEX150 form a stable subcomplex that facilitates HSP101 docking. We also demonstrate that HSP101 localises both within the parasitophorous vacuole and within the parasite’s ER throughout the ring and trophozoite stage of the parasite, coinciding with the timeframe of protein export. Interestingly, we found that HSP101 can form specific interactions with model PEXEL proteins in the parasite ER, irrespective of their PEXEL processing status. Collectively, our data suggest that HSP101 recognises and chaperones PEXEL proteins from the ER to the parasitophorous vacuole and given HSP101’s specificity for the EXP2-PTEX150 subcomplex, this provides a mechanism for how exported proteins are specifically targeted to PTEX for translocation into the erythrocyte. Author Summary Plasmodium falciparum , the most lethal species of human malaria parasite, infects erythrocytes and develops within a parasitophorous vacuole. To support rapid parasite growth and immune evasion, the parasite remodels its erythrocyte by exporting a myriad of proteins into the erythrocyte compartment. Parasite proteins destined for export are first imported into the endoplasmic reticulum (ER) and then secreted into the parasitophorous vacuole, where they are translocated across the parasitophorous vacuole membrane into the erythrocyte via a protein-conducting channel called PTEX. A missing link in the story has been how proteins destined for export are specifically guided from the ER to PTEX at the parasitophorous vacuole membrane. In this study, we found that one of the core PTEX components, HSP101, resides within the parasite’s ER, in addition to its PTEX-related location at the parasitophorous vacuole. We also found that ER-located HSP101 can interact transiently with cargo proteins en route to the parasitophorous vacuole membrane. Our findings support a model in which HSP101 forms an initial interaction with exported proteins in the ER and then chaperones them to the rest of PTEX at the parasitophorous vacuole membrane for export into the erythrocyte.