Summary Photo-dependent processes, including circadian rhythm, autophagy, ubiquitination, neddylation/deneddylation, and metabolite biosynthesis, profoundly influence microbial pathogenesis. Although a photomorphogenesis signalosome (COP9/CSN) has been identified, the mechanism by which this large complex contributes to pathophysiological processes in filamentous fungi remains unclear. Here, we identified eight CSN complex subunits in the rice blast fungus Magnaporthe oryzae and functionally characterized the translocon subunits containing a nuclear export or localization signal (NES/NLS). Targeted gene replacement of these CSN subunits, including MoCSN3 , MoCSN5 , MoCSN6 , MoCSN7 , and MoCSN12 , attenuated vegetative growth and conidiation in M. oryzae and rendered non-pathogenic deletion strains. MoCSN7 deletion significantly suppressed arachidonic acid catabolism, compromised cell wall integrity, subverted photo-dependent ubiquitination, and abolished photo-responsiveness. Surprisingly, we also discovered that MoCSN subunits, particularly MoCsn7, are required for the cAMP-dependent regulation of autophagic flux. Therefore, MoCSN significantly contributes to morphological, physiological, and pathogenic differentiation in M. oryzae by fostering cross-talk between multiple pathways.