KS
Kiyotaka Shiba
Author with expertise in Biomedical Applications of Graphene Nanomaterials
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
1,763
h-index:
50
/
i10-index:
112
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Drug-Loaded Carbon Nanohorns: Adsorption and Release of Dexamethasone in Vitro

Tatsuya Murakami et al.Sep 24, 2004
Single-wall carbon nanohorns (SWNHs) are recently discovered nanostructured spherical aggregates of graphitic tubes. The unique physicochemical properties of SWNHs, including their large surface area, suggest their possible utility as carriers in drug delivery systems. Here we investigated the in vitro binding and release of the antiinflammatory glucocorticoid dexamethasone (DEX) by as-grown SWNHs and their oxidized form, oxSWNHs. Adsorption analyses using [3H]-DEX determined the amount of DEX adsorbed by oxSWNHs to be 200 mg for each gram of oxSWNHs in 0.5 mg/mL of DEX solution, which was approximately 6 times larger than that obtained for as-grown SWNHs. Adsorption kinetics indicated that oxSWNHs had higher affinity for DEX than as-grown SWNHs. Treatment of oxSWNHs at 1200 degrees C under H2, which removed the oxygen-containing functional groups on oxSWNHs, did not diminish the high affinity for DEX, suggesting that oxygen-containing functional groups have little contribution for the affinity. DEX-oxSWNH complexes exhibited sustained release of DEX into phosphate-buffered saline (pH 7.4) at 37 degrees C and more rapid biphasic release into culture medium. The biological integrity of the released DEX form was confirmed by activation of glucocorticoid response element-driven transcription in mouse bone marrow stromal ST2 cells and induction of alkaline phosphatase in mouse osteoblastic MC3T3-E1 cells. Notably, synthesis of SWNHs does not require a metal catalyst, the toxicity of which could become problematical in clinical use, and no cytotoxicity was observed in cells cultured in the presence of oxSWNHs under our conditions. Taken together, these observations highlight the potential utility of SWNHs in drug delivery systems.
1

Differentiation of Large Extracellular Vesicles in Oral Fluid: Combined Protocol of Small Force Centrifugation and Pattern Analysis

Takamasa Kawano et al.Apr 30, 2023
Abstract Extracellular vesicles (EVs) in biofluids are highly heterogeneous entities in terms of their origins and physicochemical properties. Considering the application of EVs in diagnostic and therapeutic fields, it is of extreme importance to establish differentiating methods by which focused EV subclasses are operationally defined. Several differentiation protocols have been proposed; however, they have mainly focused on smaller types of EVs, and the heterogeneous nature of large EVs has not yet been fully explored. In this report, to classify large EVs into subgroups based on their physicochemical properties, we have developed a protocol, named EV differentiation by sedimentation patterns (ESP), in which entities in the crude large EV fraction are first moved through a density gradient of iodixanol with small centrifugation forces, and then the migration patterns of molecules through the gradients are analyzed using a non-hierarchical data clustering algorithm. Based on this method, proteins in the large EV fractions of oral fluids clustered into three groups: proteins shared with small EV cargos and enriched in immuno-related proteins (Group 1), proteins involved in energy metabolism and protein synthesis (Group 2), and proteins required for vesicle trafficking (Group 3). These observations indicate that the physiochemical properties of EVs, which are defined through low-speed gradient centrifugation, are well associated with their functions within cells. This protocol enables the detailed subclassification of EV populations that are difficult to differentiate using conventional separation methods.