SN
Stephanie Niklaus
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
2
h-index:
7
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Loss of slc39a14 causes simultaneous manganese deficiency and hypersensitivity in zebrafish

Karin Tuschl et al.Jan 31, 2020
Mutations in SLC39A14, a manganese uptake transporter, lead to a neurodegenerative disorder characterised by accumulation of manganese in the brain and rapidly progressive dystonia-parkinsonism (Hypermanganesemia with Dystonia 2, HMNDYT2). Similar to the human phenotype, zebrafish slc39a14U801-/- mutants show prominent brain manganese accumulation and abnormal locomotor behaviour. In order to identify novel potential targets of manganese neurotoxicity, we performed transcriptome analysis of individual homozygous mutant and sibling slc39a14U801 zebrafish at five days post fertilisation unexposed and exposed to MnCl2. Anatomical gene enrichment analysis confirmed that differentially expressed genes map to the central nervous system and eye. Biological interpretation of differentially expressed genes suggests that calcium dyshomeostasis, activation of the unfolded protein response, oxidative stress, mitochondrial dysfunction, lysosomal disruption, apoptosis and autophagy, and interference with proteostasis are key events in manganese neurotoxicity. Differential expression of visual phototransduction genes also predicted visual dysfunction in mutant larvae which was confirmed by the absence of visual background adaptation and a diminished optokinetic reflex. Surprisingly, we found a group of differentially expressed genes in mutant larvae that normalised upon MnCl2 treatment suggesting that, in addition to neurotoxicity, manganese deficiency is present either subcellularly or in specific cells or tissues. This may have important implications for treatment as manganese chelation may aggravate neurological symptoms. Our analyses show that slc39a14U801-/- mutant zebrafish present a powerful model to study the cellular and molecular mechanisms underlying disrupted manganese homeostasis.
0

Characterization of Postsynaptic Glutamate Transporter Functionality in the Zebrafish Retinal First Synapse Across Different Wavelengths

Marco Garbelli et al.Aug 9, 2024
Abstract In the zebrafish retina, incident light undergoes wavelength-dependent processing encompassing mechanisms such as color opponency, contrast enhancement, and motion detection prior to neural transmission to the brain proper. In darkness, photoreceptors continuously release glutamate into the synaptic cleft, a process that diminishes in response to increased light intensity, thereby conveying visual signals to ON and OFF bipolar cells. Specifically, in zebrafish, the ON pathway signal transduction is mediated by metabotropic glutamate receptor 6b (mGluR6b) and Excitatory Amino Acid Transporters (EAATs). Here we demonstrate that knockout of eaat5b and eaat7 disrupts electroretinogram responses to short and long-wavelength stimuli while preserving middle-wavelength responses, suggesting wavelength-specific roles. We found differential expression of EAAT5b and EAAT7 in the outer plexiform layer, particularly in the strike zone, crucial for prey capture, supporting task specific involvement of these signaling pathways. In order to investigate this, we developed a virtual hunting assay using UV light stimuli. Such a behavioral assay targeting short and long wavelengths indicate that EAAT5b and EAAT7 influence UV-dependent prey detection and motion sensing differently. Our findings highlight the importance of EAAT5b and EAAT7 in modulating light integration dynamics in the zebrafish retina.