SN
Swati Naphade
Author with expertise in Molecular Mechanisms of Neurodegenerative Diseases
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
4
h-index:
13
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

Insulin-like growth factor 2 (IGF2) protects against Huntington’s disease through the extracellular disposal of protein aggregates

Paula García-Huerta et al.May 30, 2020
Abstract Impaired neuronal proteostasis is a salient feature of many neurodegenerative diseases, highlighting alterations in the function of the endoplasmic reticulum (ER). We previously reported that targeting the transcription factor XBP1, a key mediator of the ER stress response, delays disease progression and reduces protein aggregation in various models of neurodegeneration. To identify disease-modifier genes that may explain the neuroprotective effects of XBP1 deficiency, we performed gene expression profiling of brain cortex and striatum of these animals and uncovered insulin-like growth factor 2 ( Igf2 ) as the major upregulated gene. Here we studied the impact of IGF2 signaling on protein aggregation in models of Huntington’s disease (HD) as proof-of-concept. Cell culture studies revealed that IGF2 treatment decreases the load of intracellular aggregates of mutant huntingtin and a polyglutamine peptide. These results were validated using induced pluripotent stem cells (iPSC)-derived medium spiny neurons from HD patients. The reduction in the levels of mutant huntingtin was associated with a decrease in the half-life of the intracellular protein. The decrease in the levels of abnormal protein aggregation triggered by IGF2 were independent of the activity of autophagy and the proteasome pathways, the two main routes for mutant huntingtin clearance. Conversely, IGF2 signaling enhanced the secretion of soluble mutant huntingtin species through exosomes and microvesicles involving changes in actin dynamics. Administration of IGF2 into the brain of HD mice using gene therapy led to a significant decrease in the levels of mutant huntingtin in three different animal models. Moreover, analysis of human post-mortem brain tissue, and blood samples from HD patients showed a reduction of IGF2 level. This study identifies IGF2 as a relevant factor deregulated in HD, operating as a disease modifier that buffers the accumulation of abnormal protein aggregates. One sentence summary IGF2 reduces the load of intracellular protein aggregates through the extracellular disposal of the mutant protein.
6
Citation4
0
Save
5

Proteomic Analysis of Huntington’s Disease Medium Spiny Neurons Identifies Alterations in Lipid Droplets

Kizito-Tshitoko Tshilenge et al.May 11, 2022
ABSTRACT Huntington’s disease (HD) is a neurodegenerative disease caused by a CAG repeat expansion in the Huntingtin ( HTT ) gene. The resulting polyglutamine (polyQ) tract alters the function of the HTT protein. Although HTT is expressed in different tissues, the medium spiny projection neurons (MSNs) in the striatum are particularly vulnerable in HD. Thus, we sought to define the proteome of human HD patient-derived MSNs. We differentiated HD72 induced pluripotent stem cells and isogenic controls into MSNs and carried out quantitative proteomic analysis by two approaches. First, using data-dependent acquisitions with FAIMS (FAIMS-DDA) for label-free quantification on the Orbitrap Lumos mass spectrometer, we identified 6,323 proteins with at least two unique peptides (FDR ≤ 0.01). Of these, 901 proteins were significantly altered in the HD72-MSNs, compared to isogenic controls. Second, we quantitatively validated protein candidates by comprehensive data-independent acquisitions on a TripleTOF 6600 mass spectrometer quantifying 3,106 proteins with at least two unique peptides. Functional enrichment analysis identified pathways related to the extracellular matrix, including TGF-ý regulation of extracellular matrix, epithelial-mesenchymal transition, DNA replication, senescence, cardiovascular system, organism development, regulation of cell migration and locomotion, aminoglycan glycosaminoglycan proteoglycan, growth factor stimulus and fatty acid processes. Conversely, processes associated with the downregulated proteins included neurogenesis-axogenesis, the brain-derived neurotrophic factor-signaling pathway, Ephrin-A: EphA pathway, regulation of synaptic plasticity, triglyceride homeostasis cholesterol, plasmid lipoprotein particle immune response, interferon-γ signaling, immune system major histocompatibility complex, lipid metabolism and cellular response to stimulus. Moreover, proteins involved in the formation and maintenance of axons, dendrites, and synapses (e.g., Septin protein members) are dysregulated in HD72-MSNs. Importantly, lipid metabolism pathways were altered, and we found that lipid droplets accumulated in the HD72-MSNs, suggesting a deficit in lipophagy. Our proteomics analysis of HD72-MSNs identified relevant pathways that are altered in MSNs and confirm current and new therapeutic targets for HD.
1

Transcriptomic Characterization Reveals Disrupted Medium Spiny Neuron Trajectories in Huntington’s Disease and Possible Therapeutic Avenues

Carlos Aguirre et al.May 1, 2023
SUMMARY Huntington’s disease (HD) is a neurodegenerative disorder caused by an expansion of CAG repeats in exon 1 of the HTT gene, ultimately resulting in the generation of a mutant HTT (mHTT) protein. Although mHTT is expressed in various tissues, it significantly affects medium spiny neurons (MSNs) in the striatum, resulting in their loss and the subsequent motor function impairment in HD. While HD symptoms typically emerge in midlife, disrupted MSN neurodevelopment has an important role. To explore the effects of mHTT on MSN development, we differentiated HD induced pluripotent stem cells (iPSC) and isogenic controls into neuronal stem cells, and then generated a developing MSN population encompassing early, intermediate progenitors, and mature MSNs. Single-cell RNA sequencing revealed that the developmental trajectory of MSNs in our model closely emulated the trajectory of fetal striatal neurons. However, in the HD MSN cultures, the differentiation process downregulated several crucial genes required for proper MSN maturation, including Achaete-scute homolog 1 and members of the DLX family of transcription factors. Our analysis also uncovered a progressive dysregulation of multiple HD-related pathways as the MSNs matured, including the NRF2-mediated oxidative stress response and mitogen-activated protein kinase signaling. Using the transcriptional profile of developing HD MSNs, we searched the L1000 dataset for small molecules that induce the opposite gene expression pattern. Our analysis pinpointed numerous small molecules with known benefits in HD models, as well as previously untested novel molecules. A top novel candidate, Cerulenin, partially restored the DARPP-32 levels and electrical activity in HD MSNs, and also modulated genes involved in multiple HD-related pathways.