SC
Simon Cool
Author with expertise in Tissue Engineering and Regenerative Medicine
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
836
h-index:
54
/
i10-index:
131
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Controlled release of heparin from poly(ε-caprolactone) electrospun fibers

Emma Luong-Van et al.Nov 22, 2005
Sustained delivery of heparin to the localized adventitial surface of grafted blood vessels has been shown to prevent the vascular smooth muscle cell (VSMC) proliferation that can lead to graft occlusion and failure. In this study heparin was incorporated into electrospun poly(ε-caprolactone) (PCL) fiber mats for assessment as a controlled delivery device. Fibers with smooth surfaces and no bead defects could be spun from polymer solutions with 8% w/v PCL in 7:3 dichloromethane:methanol. A significant decrease in fiber diameter was observed with increasing heparin concentration. Assessment of drug loading, and imaging of fluorescently labeled heparin showed homogenous distribution of heparin throughout the fiber mats. A total of approximately half of the encapsulated heparin was released by diffusional control from the heparin/PCL fibers after 14 days. The fibers did not induce an inflammatory response in macrophage cells in vitro and the released heparin was effective in preventing the proliferation of VSMCs in culture. These results suggest that electrospun PCL fibers are a promising candidate for delivery of heparin to the site of vascular injury.
0

Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production

Emily Camilleri et al.Aug 11, 2016
Clinical translation of mesenchymal stromal cells (MSCs) necessitates basic characterization of the cell product since variability in biological source and processing of MSCs may impact therapeutic outcomes. Although expression of classical cell surface markers (e.g., CD90, CD73, CD105, and CD44) is used to define MSCs, identification of functionally relevant cell surface markers would provide more robust release criteria and options for quality control. In addition, cell surface expression may distinguish between MSCs from different sources, including bone marrow-derived MSCs and clinical-grade adipose-derived MSCs (AMSCs) grown in human platelet lysate (hPL).In this work we utilized quantitative PCR, flow cytometry, and RNA-sequencing to characterize AMSCs grown in hPL and validated non-classical markers in 15 clinical-grade donors.We characterized the surface marker transcriptome of AMSCs, validated the expression of classical markers, and identified nine non-classical markers (i.e., CD36, CD163, CD271, CD200, CD273, CD274, CD146, CD248, and CD140B) that may potentially discriminate AMSCs from other cell types. More importantly, these markers exhibit variability in cell surface expression among different cell isolates from a diverse cohort of donors, including freshly prepared, previously frozen, or proliferative state AMSCs and may be informative when manufacturing cells.Our study establishes that clinical-grade AMSCs expanded in hPL represent a homogeneous cell culture population according to classical markers,. Additionally, we validated new biomarkers for further AMSC characterization that may provide novel information guiding the development of new release criteria.Use of Autologous Bone Marrow Aspirate Concentrate in Painful Knee Osteoarthritis (BMAC): Clinicaltrials.gov NCT01931007 . Registered August 26, 2013. MSC for Occlusive Disease of the Kidney: Clinicaltrials.gov NCT01840540 . Registered April 23, 2013. Mesenchymal Stem Cell Therapy in Multiple System Atrophy: Clinicaltrials.gov NCT02315027 . Registered October 31, 2014. Efficacy and Safety of Adult Human Mesenchymal Stem Cells to Treat Steroid Refractory Acute Graft Versus Host Disease. Clinicaltrials.gov NCT00366145 . Registered August 17, 2006. A Dose-escalation Safety Trial for Intrathecal Autologous Mesenchymal Stem Cell Therapy in Amyotrophic Lateral Sclerosis. Clinicaltrials.gov NCT01609283 . Registered May 18, 2012.
0
Citation221
0
Save
0

Establishing Criteria for Human Mesenchymal Stem Cell Potency

Rebekah Samsonraj et al.Mar 5, 2015
Abstract This study sought to identify critical determinants of mesenchymal stem cell (MSC) potency using in vitro and in vivo attributes of cells isolated from the bone marrow of age- and sex-matched donors. Adherence to plastic was not indicative of potency, yet capacity for long-term expansion in vitro varied considerably between donors, allowing the grouping of MSCs from the donors into either those with high-growth capacity or low-growth capacity. Using this grouping strategy, high-growth capacity MSCs were smaller in size, had greater colony-forming efficiency, and had longer telomeres. Cell-surface biomarker analysis revealed that the International Society for Cellular Therapy (ISCT) criteria did not distinguish between high-growth capacity and low-growth capacity MSCs, whereas STRO-1 and platelet-derived growth factor receptor alpha were preferentially expressed on high-growth capacity MSCs. These cells also had the highest mean expression of the mRNA transcripts TWIST-1 and DERMO-1. Irrespective of these differences, both groups of donor MSCs produced similar levels of key growth factors and cytokines involved in tissue regeneration and were capable of multilineage differentiation. However, high-growth capacity MSCs produced approximately double the volume of mineralized tissue compared to low-growth capacity MSCs when assessed for ectopic bone-forming ability. The additional phenotypic criteria presented in this study when combined with the existing ISCT minimum criteria and working proposal will permit an improved assessment of MSC potency and provide a basis for establishing the quality of MSCs prior to their therapeutic application. Stem Cells 2015;33:1878–1891
0
Citation185
0
Save
0

Raman mapping glucose metabolites during human mesenchymal stem cell adipogenesis

Gomathy Subramanian et al.Apr 19, 2020
Raman mapping was used to determine the lipid distribution inside human mesenchymal stem cells during induced adipogenesis by monitoring C-H stretching bands of the fats inside the lipid droplets. By incorporating deuterated glucose into the cell culture medium during induction it was possible to distinguish whether or not downstream metabolites, either in lipid droplets or in the cytoplasm, had been formed before or after the adipogenic cascade, because C-D stretching bands are 1/√2 shifted compared to the C-H bands. Thus, metabolites formed after the initiation of the process displayed both C-H and C-D stretching bands and so were forming during induced adipogenesis rather than prior to it. With the ability to distinguish small putative lipid drops formed by the induction of adipogenesis from those pre-formed in the cell, it was possible to analyze spectral changes occurring in the droplets at the earliest stages of adipogenesis. There were two key findings. Firstly, Raman spectra of lipid droplets evolved over time, suggesting that their composition at the early stages was not the same as at the later stages. Secondly, it was apparent that the proportion of unsaturated fats in droplets was higher at early stages than it was at later stages, suggesting that unsaturated fats arrive in the droplets faster than saturated ones.### Competing Interest StatementThe authors have declared no competing interest.
1

Scalable Mesenchymal Stem Cells Enrichment from Bone Marrow Aspirate using Deterministic Lateral Displacement (DLD) Microfluidics Sorting

Nicholas Zen et al.May 4, 2023
Abstract The growing interest in regenerative medicine has opened new avenues for novel cell therapies using stem cells. Bone Marrow Aspirate (BMA) is an important source of stromal mesenchymal stem cells (MSCs). Conventional MSC harvesting from BMA relies on archaic centrifugation methods, often leading to poor yield due to osmotic stress, high centrifugation force, convoluted workflow, and long experimental time (∼ 2 – 3 hours). To address these issues, we have developed a scalable microfluidic technology based on Deterministic Lateral Displacement (DLD) for MSC isolation. This passive, label-free cell sorting method capitalizes on the morphological differences between MSCs and blood cells (leukocytes and RBCs) for effective separation using an inverted L-shaped pillar array. To improve throughput, we developed a novel portable multiplexed DLD system that can process 2.5 mL of raw BMA in 20 ± 5 minutes, achieving a 2-fold increase in MSC recovery compared to centrifugation methods. Taken together, we envision the developed DLD platform will enable fast and efficient isolation of MSCs from BMA for effective downstream cell therapy in clinical settings.