DL
Daishun Ling
Author with expertise in Nanotechnology and Imaging for Cancer Therapy and Diagnosis
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
18
(22% Open Access)
Cited by:
3,398
h-index:
57
/
i10-index:
124
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Multifunctional Tumor pH-Sensitive Self-Assembled Nanoparticles for Bimodal Imaging and Treatment of Resistant Heterogeneous Tumors

Daishun Ling et al.Apr 1, 2014
Nanoparticle-based diagnosis–therapy integrative systems represent an emerging approach to cancer treatment. However, the diagnostic sensitivity, treatment efficacy, and bioavailability of nanoparticles as well as the heterogeneity and drug resistance of tumors pose tremendous challenges for clinical implementation. We herein report on the fabrication of tumor pH-sensitive magnetic nanogrenades (termed PMNs) composed of self-assembled iron oxide nanoparticles and pH-responsive ligands. These PMNs can readily target tumors via surface-charge switching triggered by the acidic tumor microenvironment, and are further disassembled into a highly active state in acidic subcellular compartments that "turns on" MR contrast, fluorescence and photodynamic therapeutic activity. We successfully visualized small tumors implanted in mice via unique pH-responsive T1MR contrast and fluorescence, demonstrating early stage diagnosis of tumors without using any targeting agents. Furthermore, pH-triggered generation of singlet oxygen enabled pH-dependent photodynamic therapy to selectively kill cancer cells. In particular, we demonstrated the superior therapeutic efficacy of PMNs in highly heterogeneous drug-resistant tumors, showing a great potential for clinical applications.
0
Citation469
0
Save
0

Arginine-Rich Manganese Silicate Nanobubbles as a Ferroptosis-Inducing Agent for Tumor-Targeted Theranostics

Shuaifei Wang et al.Nov 29, 2018
Ferroptosis, an iron-based cell-death pathway, has recently attracted great attention owing to its effectiveness in killing cancer cells. Previous investigations focused on the development of iron-based nanomaterials to induce ferroptosis in cancer cells by the up-regulation of reactive oxygen species (ROS) generated by the well-known Fenton reaction. Herein, we report a ferroptosis-inducing agent based on arginine-rich manganese silicate nanobubbles (AMSNs) that possess highly efficient glutathione (GSH) depletion ability and thereby induce ferroptosis by the inactivation of glutathione-dependent peroxidases 4 (GPX4). The AMSNs were synthesized via a one-pot reaction with arginine (Arg) as the surface ligand for tumor homing. Subsequently, a significant tumor suppression effect can be achieved by GSH depletion-induced ferroptosis. Moreover, the degradation of AMSNs during the GSH depletion contributed to T1-weighted magnetic resonance imaging (MRI) enhancement as well as on-demand chemotherapeutic drug release for synergistic cancer therapy. We anticipate that the GSH-depletion-induced ferroptosis strategy by using manganese-based nanomaterials would provide insights in designing nanomedicines for tumor-targeted theranostics.
0
Citation327
0
Save
0

Promoting Angiogenesis in Oxidative Diabetic Wound Microenvironment Using a Nanozyme-Reinforced Self-Protecting Hydrogel

Haibin Wu et al.Feb 13, 2019
Impaired diabetic wound healing represents a devastating and rapidly growing clinical problem associated with high morbidity, mortality, and recurrence rates. Engineering therapeutic angiogenesis in the wounded tissue is critical for successful wound healing. However, stimulating functional angiogenesis of the diabetic wound remains a great challenge, due to the oxidative damage and denaturation of bio-macromolecule-based angiogenic agents in the oxidative diabetic wound microenvironment. Here, we present a unique "seed-and-soil" strategy that circumvents the limitation by simultaneously reshaping the oxidative wound microenvironment into a proregenerative one (the "soil") and providing proangiogenic miRNA cues (the "seed") using an miRNA-impregnated, redox-modulatory ceria nanozyme-reinforced self-protecting hydrogel (PCN-miR/Col). The PCN-miR/Col not only reshapes the hostile oxidative wound microenvironment, but also ensures the structural integrity of the encapsulated proangiogenic miRNA in the oxidative microenvironment. Diabetic wounds treated with the PCN-miR/Col demonstrate a remarkably accelerated wound closure and enhanced quality of the healed wound as featured by highly ordered alignment of collagen fiber, skin appendage morphogenesis, functional new blood vessel growth, and oxygen saturation.
0

Biodegradation-Mediated Enzymatic Activity-Tunable Molybdenum Oxide Nanourchins for Tumor-Specific Cascade Catalytic Therapy

Xi Hu et al.Dec 27, 2019
Recent advances in nanomedicine have facilitated the development of potent nanomaterials with intrinsic enzyme-like activities (nanozymes) for cancer therapy. However, it remains a great challenge to fabricate smart nanozymes that precisely perform enzymatic activity in tumor microenvironment without inducing off-target toxicity to surrounding normal tissues. Herein, we report on designed fabrication of biodegradation-medicated enzymatic activity-tunable molybdenum oxide nanourchins (MoO3-x NUs), which selectively perform therapeutic activity in tumor microenvironment via cascade catalytic reactions, while keeping normal tissues unharmed due to their responsive biodegradation in physiological environment. Specifically, the MoO3-x NUs first induce catalase (CAT)-like reactivity to decompose hydrogen peroxide (H2O2) in tumor microenvironment, producing a considerable amount of O2 for subsequent oxidase (OXD)-like reactivity of MoO3-x NUs; a substantial cytotoxic superoxide radical (·O2-) is thus generated for tumor cell apoptosis. Interestingly, once exposed to neutral blood or normal tissues, MoO3-x NUs rapidly lose the enzymatic activity via pH-responsive biodegradation and are excreted in urine, thus ultimately ensuring safety. The current study demonstrates a proof of concept of biodegradation-medicated in vivo catalytic activity-tunable nanozymes for tumor-specific cascade catalytic therapy with minimal off-target toxicity.
0

Tau-Targeted Multifunctional Nanocomposite for Combinational Therapy of Alzheimer’s Disease

Qing Chen et al.Jan 24, 2018
Alzheimer's disease (AD) remains an incurable disease and lacks efficient diagnostic methods. Most AD treatments have focused on amyloid-β (Aβ) targeted therapy; however, it is time to consider the alternative theranostics due to accumulated findings of weak correlation between Aβ deposition and cognition, as well as the failures of Phase III clinical trial on Aβ targeted therapy. Recent studies have shown that the tau pathway is closely associated with clinical development of AD symptoms, which might be a potential therapeutic target. We herein construct a methylene blue (MB, a tau aggregation inhibitor) loaded nanocomposite (CeNC/IONC/MSN-T807), which not only possesses high binding affinity to hyperphosphorylated tau but also inhibits multiple key pathways of tau-associated AD pathogenesis. We demonstrate that these nanocomposites can relieve the AD symptoms by mitigating mitochondrial oxidative stress, suppressing tau hyperphosphorylation, and preventing neuronal death both in vitro and in vivo. The memory deficits of AD rats are significantly rescued upon treatment with MB loaded CeNC/IONC/MSN-T807. Our results indicate that hyperphosphorylated tau-targeted multifunctional nanocomposites could be a promising therapeutic candidate for Alzheimer's disease.
0

Organelle-Specific Triggered Release of Immunostimulatory Oligonucleotides from Intrinsically Coordinated DNA–Metal–Organic Frameworks with Soluble Exoskeleton

Zejun Wang et al.Oct 12, 2017
DNA has proven of high utility to modulate the surface functionality of metal–organic frameworks (MOFs) for various biomedical applications. Nevertheless, current methods for preparing DNA–MOF nanoparticles rely on either inefficient covalent conjugation or specific modification of oligonucleotides. In this work, we report that unmodified oligonucleotides can be loaded on MOFs with high density (∼2500 strands/particle) via intrinsic, multivalent coordination between DNA backbone phosphate and unsaturated zirconium sites on MOFs. More significantly, surface-bound DNA can be efficiently released in either bulk solution or specific organelles in live cells when free phosphate ions are present. As a proof-of-concept for using this novel type of DNA–MOFs in immunotherapy, we prepared a construct of immunostimulatory DNA–MOFs (isMOFs) by intrinsically coordinating cytosine–phosphate–guanosine (CpG) oligonucleotides on biocompatible zirconium MOF nanoparticles, which was further armed by a protection shell of calcium phosphate (CaP) exoskeleton. We demonstrated that isMOFs exhibited high cellular uptake, organelle specificity, and spatiotemporal control of Toll-like receptors (TLR)-triggered immune responses. When isMOF reached endolysosomes via microtubule-mediated trafficking, the CaP exoskeleton dissolved in the acidic environment and in situ generated free phosphate ions. As a result, CpG was released from isMOFs and stimulated potent immunostimulation in living macrophage cells. Compared with naked CpG–MOF, isMOFs exhibited 83-fold up-regulation in stimulated secretion of cytokines. We thus expect this isMOF design with soluble CaP exoskeleton and an embedded sequential "protect–release" program provides a highly generic approach for intracellular delivery of therapeutic nucleic acids.
Load More