NG
Nasab Ghazal
Author with expertise in Mitochondrial Dynamics and Reactive Oxygen Species Regulation
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
1
h-index:
5
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
5

Mitochondrial functional resilience after TFAM ablation in adult cardiomyocytes

Nasab Ghazal et al.Jun 19, 2020
Abstract The adult heart is a terminally differentiated tissue that depends on mitochondria for its energy supply. Respiratory chain energy supply deficits due to alterations in the mitochondrial genome (mtDNA) or in nuclear genome (nDNA)-encoded mtDNA regulators are associated with cardiac pathologies ranging from primary mitochondrial cardiomyopathies to heart failure. Mitochondrial transcription factor A (TFAM) is an nDNA-encoded regulator of mtDNA transcription, replication, and maintenance. Insufficiency of this protein in embryonic and postnatal cardiomyocytes causes cardiomyopathy and/or lethality, establishing TFAM as indispensable to the developing heart; its role in adult tissue has been inferred from these findings. Here, we provide evidence that challenges this long-standing paradigm using Tfam ablation in the adult heart. Unexpectedly, loss of Tfam in adult cardiomyocytes resulted in a prolonged period of functional resilience characterized by preserved mtDNA content, mitochondrial function, and cardiac function despite mitochondrial structural alterations and decreased transcript abundance. Remarkably, TFAM protein levels did not directly dictate mtDNA content in the adult heart, and mitochondrial translation was preserved with acute TFAM inactivation, suggesting a mechanism whereby respiratory chain assembly and function can be sustained, which we term ‘functional resilience’. Finally, long-term Tfam inactivation induced a coordinated downregulation of the core mtDNA transcription and replication machinery that ultimately resulted in mitochondrial dysfunction and cardiomyopathy. Taken together, adult-onset cardiomyocyte-specific Tfam inactivation reveals a striking resilience of the adult heart to acute insults to mtDNA regulatory mechanisms and provides insight into critical differences between the developing versus differentiated heart.
5
Citation1
0
Save
1

Mitochondrial citrate carrier SLC25A1 is a dosage-dependent regulator of metabolic reprogramming and morphogenesis in the developing heart

Chiemela Ohanele* et al.May 22, 2023
The developing mammalian heart undergoes an important metabolic shift from glycolysis toward mitochondrial oxidation, such that oxidative phosphorylation defects may present with cardiac abnormalities. Here, we describe a new mechanistic link between mitochondria and cardiac morphogenesis, uncovered by studying mice with systemic loss of the mitochondrial citrate carrier SLC25A1. Slc25a1 null embryos displayed impaired growth, cardiac malformations, and aberrant mitochondrial function. Importantly, Slc25a1 haploinsufficient embryos, which are overtly indistinguishable from wild type, exhibited an increased frequency of these defects, suggesting Slc25a1 dose-dependent effects. Supporting clinical relevance, we found a near-significant association between ultrarare human pathogenic SLC25A1 variants and pediatric congenital heart disease. Mechanistically, SLC25A1 may link mitochondria to transcriptional regulation of metabolism through epigenetic control of PPARγ to promote metabolic remodeling in the developing heart. Collectively, this work positions SLC25A1 as a novel mitochondrial regulator of ventricular morphogenesis and cardiac metabolic maturation and suggests a role in congenital heart disease.
1

Mitochondrial energy dysfunction induces remodeling of the cardiac mitochondrial protein acylome

Jessica Peoples et al.Feb 1, 2021
ABSTRACT Mitochondria are increasingly recognized as signaling organelles because, under conditions of stress, mitochondria can trigger various signaling pathways to coordinate the cell’s response. The specific pathway(s) engaged by mitochondria in response to defects in mitochondrial energy production in vivo and in high-energy tissues like the heart are not fully understood. Here, we investigated cardiac pathways activated in response to mitochondrial energy dysfunction by studying mice with cardiomyocyte-specific loss of the mitochondrial phosphate carrier (SLC25A3), an established model that develops cardiomyopathy as a result of defective mitochondrial ATP synthesis. In heart tissue from these mice, mitochondrial energy dysfunction induced a striking pattern of acylome remodeling, with significantly increased post-translational acetylation and malonylation. Mass spectrometry-based proteomics further revealed that energy dysfunction-induced remodeling of the acetylome and malonylome preferentially impacts mitochondrial proteins. Acetylation and malonylation modified a highly interconnected interactome of mitochondrial proteins, and both modifications were present on the enzyme isocitrate dehydrogenase 2 (IDH2). Intriguingly, IDH2 activity was enhanced in SLC25A3-deleted mitochondria, and further study of IDH2 sites targeted by both acetylation and malonylation revealed that these modifications can have site-specific and distinct functional effects. Finally, we uncovered a novel crosstalk between the two modifications, whereby mitochondrial energy dysfunction-induced acetylation of sirtuin 5 (SIRT5), inhibited its function. Because SIRT5 is a mitochondrial deacylase with demalonylase activity, this finding suggests that acetylation can modulate the malonylome. Together, our results position acylations as an arm of the mitochondrial response to energy dysfunction and suggest a mechanism by which focal disruption to the mitochondrial energy production machinery can have an expanded impact on global mitochondrial function.