SM
Susanna Miettinen
Author with expertise in Multipotent Mesenchymal Stem Cells
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
944
h-index:
52
/
i10-index:
113
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells

Karri Mesimäki et al.Jan 27, 2009

Abstract

 Microvascular reconstruction is the state-of-the-art in many fields of defect surgery today. Currently, reconstruction of large bony defects involves harvesting of autologous bone causing donor site morbidity and risk of infection. Specifically, utilizing autologous adipose stem cells (autoASCs), large quantities of cells can be retrieved for cell therapy applications and the risk of tissue rejection is diminished. The authors describe the first case report of a microvascular custom-made ectopic bone flap employing good manufacturing practice (GMP) level ASCs. The patient underwent a hemimaxillectomy due to a large keratocyst. After 36 months of follow-up, the defect was reconstructed with a microvascular flap using autoASCs, beta-tricalcium phosphate and bone morphogenetic protein-2. ASCs were isolated and expanded in clean room facilities according to GMP standards and were characterized in vitro. After 8 months of follow-up, the flap had developed mature bone structures and vasculature and was transplanted into the defect area. Postoperative healing has been uneventful, and further rehabilitation with dental implants has been started. The in vitro characterization demonstrated multipotentiality and mesenchymal stem cell characteristics in ASCs. This is the first clinical case where ectopic bone was produced using autoASCs in microvascular reconstruction surgery and it will pave way for new clinical trials in the field.
0
Citation457
0
Save
0

Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks

Anni Sorkio et al.Apr 16, 2018
There is a high demand for developing methods to produce more native-like 3D corneal structures. In the present study, we produced 3D cornea-mimicking tissues using human stem cells and laser-assisted bioprinting (LaBP). Human embryonic stem cell derived limbal epithelial stem cells (hESC-LESC) were used as a cell source for printing epithelium-mimicking structures, whereas human adipose tissue derived stem cells (hASCs) were used for constructing layered stroma-mimicking structures. The development and optimization of functional bioinks was a crucial step towards successful bioprinting of 3D corneal structures. Recombinant human laminin and human sourced collagen I served as the bases for the functional bioinks. We used two previously established LaBP setups based on laser induced forward transfer, with different laser wavelengths and appropriate absorption layers. We bioprinted three types of corneal structures: stratified corneal epithelium using hESC-LESCs, lamellar corneal stroma using alternating acellular layers of bioink and layers with hASCs, and finally structures with both a stromal and epithelial part. The printed constructs were evaluated for their microstructure, cell viability and proliferation, and key protein expression (Ki67, p63α, p40, CK3, CK15, collagen type I, VWF). The 3D printed stromal constructs were also implanted into porcine corneal organ cultures. Both cell types maintained good viability after printing. Laser-printed hESC-LESCs showed epithelial cell morphology, expression of Ki67 proliferation marker and co-expression of corneal progenitor markers p63α and p40. Importantly, the printed hESC-LESCs formed a stratified epithelium with apical expression of CK3 and basal expression of the progenitor markers. The structure of the 3D bioprinted stroma demonstrated that the hASCs had organized horizontally as in the native corneal stroma and showed positive labeling for collagen I. After 7 days in porcine organ cultures, the 3D bioprinted stromal structures attached to the host tissue with signs of hASCs migration from the printed structure. This is the first study to demonstrate the feasibility of 3D LaBP for corneal applications using human stem cells and successful fabrication of layered 3D bioprinted tissues mimicking the structure of the native corneal tissue.
0

Adipose Stem Cells Used to Reconstruct 13 Cases With Cranio-Maxillofacial Hard-Tissue Defects

George Sándor et al.Feb 20, 2014
Abstract Although isolated reports of hard-tissue reconstruction in the cranio-maxillofacial skeleton exist, multipatient case series are lacking. This study aimed to review the experience with 13 consecutive cases of cranio-maxillofacial hard-tissue defects at four anatomically different sites, namely frontal sinus (3 cases), cranial bone (5 cases), mandible (3 cases), and nasal septum (2 cases). Autologous adipose tissue was harvested from the anterior abdominal wall, and adipose-derived stem cells were cultured, expanded, and then seeded onto resorbable scaffold materials for subsequent reimplantation into hard-tissue defects. The defects were reconstructed with either bioactive glass or β-tricalcium phosphate scaffolds seeded with adipose-derived stem cells (ASCs), and in some cases with the addition of recombinant human bone morphogenetic protein-2. Production and use of ASCs were done according to good manufacturing practice guidelines. Follow-up time ranged from 12 to 52 months. Successful integration of the construct to the surrounding skeleton was noted in 10 of the 13 cases. Two cranial defect cases in which nonrigid resorbable containment meshes were used sustained bone resorption to the point that they required the procedure to be redone. One septal perforation case failed outright at 1 year because of the postsurgical resumption of the patient's uncontrolled nasal picking habit.
0
Citation191
0
Save
0

Ionic Dissolution Products of Lithium-, Strontium-, and Boron-Substituted Silicate Glasses Influence the Viability and Proliferation of Adipose Stromal Cells, Fibroblasts, Urothelial and Endothelial Cells

Inari Lyyra et al.Dec 4, 2024
While bioactive glasses (BaGs) have been studied mainly for bone applications, studies have also shown their potential for soft tissue engineering. Incorporating therapeutic ions, such as lithium (Li+), strontium (Sr2+), and boron (B3+) into the BaGs, has been found to promote angiogenesis and wound healing. However, a systematic study on the impact of Li+, Sr2+, B3+, and the other ions in the BaGs, has not been conducted on a wide range of cells. Although the interactions between the BaGs and cells have been studied, it is difficult to compare the results between studies and conclude the impact of BaGs between cell types due to the variability of culture conditions, cells, and materials. We aim to evaluate the dissolution behavior of Li-, Sr-, and B-substituted BaGs and the effects of their ionic dissolution products on the viability, proliferation, and morphology of multiple cell types: human adipose stromal cells (hASCs), human lung fibroblasts (cell line WI-38), human urothelial cells (hUCs), and human umbilical vein endothelial cells (HUVECs). In the dissolution study, the B-substituted glasses induced a higher increase in pH and released more ions than the silicate glasses. The undiluted BaG extracts supported the viability and proliferation of all the other cell types except the hUCs. Diluting the BaG extracts to 1:10 restored the viability of hUCs but induced distinctive morphological changes. Diluting the extracts more (1:100) almost fully restored the hUC morphology. To conclude, the ionic dissolution products of Li-, Sr-, and B-substituted BaGs seem beneficial for hASCs, WI-38, hUCs, and HUVECs, but attention must be paid to the ion concentrations.
1

Designing patient-oriented combination therapies for acute myeloid leukemia based on efficacy/toxicity integration and bipartite network modeling

Mehdi Mirzaie et al.May 25, 2023
Abstract Acute myeloid leukemia (AML), a heterogeneous and aggressive blood cancer, does not respond well to single-drug therapy. A combination of drugs is required to effectively treat this disease. Computational models are critical for combination therapy discovery due to the tens of thousands of two-drug combinations, even with approved drugs. While predicting synergistic drugs is the focus of current methods, few consider drug efficacy and potential toxicity, which are crucial for treatment success. To find effective new drug candidates, we constructed a bipartite network using patient-derived tumor samples and drugs. The network is based on drug-response screening and summarizes all treatment response heterogeneity as drug response weights. This bipartite network is then projected onto the drug part, resulting in the drug similarity network. Distinct drug clusters were identified using community detection methods, each targeting different biological processes and pathways as revealed by enrichment and pathway analysis of the drugs’ protein targets. Four drugs with the highest efficacy and lowest toxicity from each cluster were selected and tested for drug sensitivity using cell viability assays on various samples. Results show that the combinations of ruxolitinib-ulixertinib and sapanisertib-LY3009120 are the most effective with the least toxicity and best synergistic effects on blasts. Key Points Ruxolitinib-ulixertinib and sapanisertib-LY3009120 have the best synergistic effects on AML, with the least toxicity. This study’s combinations destroy blasts without harming other cells, unlike standard chemotherapy, which kills most blasts and other cells.
0

Systematic development and bioprinting of novel nanostructured multi-material bioinks for bone tissue engineering

Jannika Korkeamäki et al.Jan 6, 2025
Abstract A functional bioink with potential in bone tissue engineering must be subjected to critical investigation throughout its intended lifespan. The aim of this study was to develop alginate-gelatin-based (Alg-Gel) multicomponent bioinks systematically and to assess the short- and long-term exposure responses of human bone marrow stromal cells (hBMSCs) printed within these bioinks with and without crosslinking. The first generation of bioinks was established by incorporating a range of cellulose nanofibrils (CNFs), to evaluate their effect on viscosity, printability and cell viability. Adding CNFs to Alg-Gel solution increased viscosity and printability without compromising cell viability. In the second generation of bioinks, the influence of nano-hydroxyapatite (nHA) on the performance of the optimized Alg-Gel-CNF formulation was investigated. The addition of nHA increased the viscosity and improved printability, and an adjustment in alginate concentration improved the stability of the structures in long-term culture. The third generation bioink incorporated RGD-functionalized alginate to support cell attachment and osteogenic differentiation. The optimized bioink composition exhibited improved printability, structural integrity in long-term culture and high hBMSC viability. In addition, the final bioink composition, RGD-Alg-Gel-CNF-nHA, showed osteogenic potential: production of the osteogenic marker proteins (Runx2, OCN), enzyme (ALP), and gene expression (Runx2, Ocn). A further aim of the study was to evaluate the osteogenic functionality of cells released from the structures after bioprinting. Cells were printed in two bioinks with different viscosities and incubated at 37 °C in growth medium without additional CaCl2. This caused gelatin to dissolve, releasing the cells to attach to tissue culture plates. The results demonstrated differences in hBMSC osteogenic differentiation. Moreover, the osteogenic differentiation of the released cells was different from that of the embedded cells cultured in 3D. Thus, this systematic investigation into bioink development shows improved results through the generations and sheds light on the biological effects of the bioprinting process.
0

Promoting cell proliferation and collagen production with ascorbic acid 2-phosphate -releasing poly(l-lactide-co-epsilon-caprolactone) membranes for treating pelvic organ prolapse

Alma Kurki et al.Jan 1, 2024
Abstract Pelvic organ prolapse (POP) afflicts millions of women globally. In POP, the weakened support of the pelvic floor results in the descent of pelvic organs into the vagina, causing a feeling of bulging, problems in urination, defaecation and/or sexual function. However, the existing surgical repair methods for relapsed POP remain insufficient, highlighting the urgent need for more effective alternatives. Collagen is an essential component in pelvic floor tissues, providing structural support, and its production is controlled by ascorbic acid. Therefore, we investigated novel ascorbic acid 2-phosphate (A2P)-releasing poly(l-lactide-co-ε-caprolactone) (PLCLA2P) membranes in vitro to promote cell proliferation and extracellular matrix protein production to strengthen the natural support of the pelvic fascia for POP applications. We analysed the mechanical properties and the impact of PLCLA2P on cellular responses through cell culture analysis using human vaginal fibroblasts (hVFs) and human adipose-derived stem/stromal cells (hASCs) compared to PLCL. In addition, the A2P release from PLCLA2P membranes was assessed in vitro. The PLCLA2P demonstrated slightly lower tensile strength (2.2 ± 0.4 MPa) compared to PLCL (3.7 ± 0.6 MPa) for the first 4 weeks in vitro. The A2P was most rapidly released during the first 48 h of in vitro incubation. Our findings demonstrated significantly increased proliferation and collagen production of both hVFs and hASCs on A2P-releasing PLCLA2P compared to PLCL. In addition, extracellular collagen Type I fibres were detected in hVFs, suggesting enhanced collagen maturation on PLCLA2P. Moreover, increased extracellular matrix protein expression was detected on PLCLA2P in both hVFs and hASCs compared to plain PLCL. In conclusion, these findings highlight the potential of PLCLA2P as a promising candidate for promoting tissue regeneration in applications aimed for POP tissue engineering applications.