Glioblastoma (GB) is a fatal disease in which most targeted therapies have clinically failed. However, pharmacological reactivation of tumor suppressors has not been thoroughly studied as yet as a GB therapeutic strategy. Tumor suppressor Protein Phosphatase 2A (PP2A), is inhibited by non-genetic mechanisms in GB, and thus it would be potentially amendable for therapeutic reactivation. Here we demonstrate, that small molecule activators of PP2A (SMAPs), NZ-8-061 and DBK-1154, effectively cross the in vitro model of blood-brain barrier (BBB), and in vivo partition to mouse brain tissue after oral dosing. In vitro , SMAPs exhibit robust cell killing activity against five established GB cell lines, and nine patient-derived primary glioma cell lines. Collectively these cell lines have heterogenous genetic background, kinase inhibitor resistance profile, and stemness properties; and they represent different clinical GB subtypes. Oral dosing of either of the SMAPs significantly reduced growth of infiltrative intracranial GB tumors. DBK-1154, with both higher degree of brain/blood distribution, and more potent in vitro activity against all tested GB cell lines, also significantly increased survival of mice bearing orthotopic GB xenografts. In summary, this report presents a proof-of-principle data for BBB-permeable tumor suppressor reactivation therapy for glioblastoma cells of heterogenous molecular background.