TD
Thibaut Desgeorges
Author with expertise in Metabolic Reprogramming in Cancer Biology
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
11
h-index:
2
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

The vascular gene Apold1 is dispensable for normal development but controls angiogenesis under pathological conditions

Zheng Fan et al.Mar 18, 2023
Abstract The molecular mechanisms of angiogenesis have been intensely studied, but many genes that control endothelial behavior and fate still need to be described. Here, we characterize the role of Apold1 (Apolipoprotein L domain containing 1) in angiogenesis in vivo and in vitro. Single-cell analyses reveal that - across tissues - the expression of Apold1 is restricted to the vasculature and that Apold1 expression in endothelial cells (ECs) is highly sensitive to environmental factors. Using Apold1 −/− mice, we find that Apold1 is dispensable for development and does not affect postnatal retinal angiogenesis nor alters the vascular network in adult brain and muscle. However, when exposed to ischemic conditions following photothrombotic stroke as well as femoral artery ligation, Apold1 −/− mice display dramatic impairments in recovery and revascularization. We also find that human tumor endothelial cells express strikingly higher levels of Apold1 and that Apold1 deletion in mice stunts the growth of subcutaneous B16 melanoma tumors, which have smaller and poorly perfused vessels. Mechanistically, Apold1 is activated in ECs upon growth factor stimulation as well as in hypoxia, and Apold1 intrinsically controls EC proliferation but not migration. Our data demonstrate that Apold1 is a key regulator of angiogenesis in pathological settings, whereas it does not affect developmental angiogenesis, thus making it a promising candidate for clinical investigation.
1
Citation10
0
Save
1

The vascular gene Apold1 is dispensable for normal development but controls angiogenesis under pathological conditions

Zheng Fan et al.Dec 13, 2022
Abstract The molecular mechanisms of angiogenesis have been intensely studied, but many genes that control endothelial behavior and fate still need to be described. Here, we characterize the role of Apold1 (Apolipoprotein L domain containing 1) in angiogenesis in vivo and in vitro. Single-cell analyses reveal that - across tissues - the expression of Apold1 is restricted to the vasculature, and that Apold1 expression in endothelial cells (ECs) is highly sensitive to environmental factors. Using Apold1-/- mice, we find that Apold1 is dispensable for development and does not affect postnatal retinal angiogenesis nor alters the vascular network in adult brain and muscle. However, when exposed to ischemic conditions following photothrombotic stroke as well as femoral artery ligation, Apold1-/- mice display dramatic impairments in recovery and revascularization. We also find that human tumor endothelial cells express strikingly higher levels of Apold1, and that Apold1 deletion in mice stunts the growth of subcutaneous B16 melanoma tumors, which have smaller and poorly perfused vessels. Mechanistically, Apold1 is activated in ECs upon growth factor stimulation as well as in hypoxia, and Apold1 intrinsically controls EC proliferation but not migration. Our data demonstrate that Apold1 is a key regulator of angiogenesis in pathological settings, whereas it does not affect developmental angiogenesis, thus making it a promising candidate for clinical investigation.
1
Citation1
0
Save
1

Single cell compendium of the muscle microenvironment in peripheral artery disease reveals capillary endothelial heterogeneity and activation of resident macrophages

Guillermo Turiel et al.Jun 22, 2023
Abstract Background Peripheral artery disease (PAD) is caused by atherosclerosis and chronic narrowing of lower limb arteries leading to decreased muscle perfusion and oxygenation. Current guidelines for treating PAD include endovascular strategies or bypass surgery but long-term outcomes have been suboptimal. This is likely due to our limited understanding of the contribution of the microvasculature as well as other cell types, in particular macrophages, to PAD skeletal muscle pathophysiology. We used single cell sequencing to investigate cellular and transcriptional heterogeneity of the skeletal muscle microenvironment in PAD. Methods Samples from the medial head of the gastrocnemius muscle of individuals undergoing either lower limb aneurysm surgery (controls) or PAD bypass surgery (PAD) were collected. Samples were either frozen for histological evaluation (control: n=4; PAD: n=6) or were immediately processed for single cell RNA sequencing of mononuclear cells (control: n=4; PAD: n= 4). Bioinformatic tools were used to annotate cell types and their subpopulations, to study transcriptional changes and to analyze cellular interactions. Results We generated a dataset comprised of 106,566 high-quality, deep-sequenced cells that compose the muscle microenvironment. Focusing on endothelial cells (ECs) and macrophages, we confirmed the presence of ATF3/4 + ECs with angiogenic and immune regulatory capacities in human muscle and found that their transcriptional profile profoundly alters during PAD. Also, capillary ECs display features of endothelial to mesenchymal transition. Furthermore, we identified LYVE1 hi MHCII low resident macrophages as the dominant macrophage population in human muscle, even under a chronic inflammatory condition such as PAD. During PAD, LYVE1 hi MHCII low macrophages get activated and acquire a more pro-inflammatory profile. Finally, we map strong intercellular communication in the muscle microenvironment, which is significantly altered in PAD. Conclusions The dataset we present here provides a highly valuable resource for gaining deeper insights into the critical roles that cells in the muscle microenvironment may play in PAD skeletal muscle pathology. We propose that targeting the crosstalk between ECs and macrophages could provide novel insights for developing effective treatments against this disease.
1

The vascular geneApold1is dispensable for normal development but controls angiogenesis under pathological conditions

Zheng Fan et al.Dec 5, 2022
Abstract The molecular mechanisms of angiogenesis have been intensely studied, but many genes that control endothelial behavior and fate still need to be described. Here, we characterize the role of Apold1 (Apolipoprotein L domain containing 1) in angiogenesis in vivo and in vitro . Single-cell analyses reveal that - across tissues - the expression of Apold1 is restricted to the vasculature, and that Apold1 expression in endothelial cells (ECs) is highly sensitive to environmental factors. Using Apold1 -/- mice, we find that Apold1 is dispensable for development and does not affect postnatal retinal angiogenesis nor alters the vascular network in adult brain and muscle. However, when exposed to ischemic conditions following photothrombotic stroke as well as femoral artery ligation, Apold1 -/- mice display dramatic impairments in recovery and revascularization. We also find that human tumor endothelial cells express strikingly higher levels of Apold1, and that Apold1 deletion in mice stunts the growth of subcutaneous B16 melanoma tumors, which have smaller and poorly perfused vessels. Mechanistically, Apold1 is activated in ECs upon growth factor stimulation as well as in hypoxia, and Apold1 intrinsically controls EC proliferation but not migration. Our data demonstrate that Apold1 is a key regulator of angiogenesis in pathological settings, whereas it does not affect developmental angiogenesis, thus making it a promising candidate for clinical investigation.