PS
Patrick Schupp
Author with expertise in RNA Methylation and Modification in Gene Expression
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
1,024
h-index:
11
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis

Matthew Canver et al.Sep 16, 2015
Enhancers, critical determinants of cellular identity, are commonly recognized by correlative chromatin marks and gain-of-function potential, although only loss-of-function studies can demonstrate their requirement in the native genomic context. Previously, we identified an erythroid enhancer of human BCL11A, subject to common genetic variation associated with the fetal haemoglobin level, the mouse orthologue of which is necessary for erythroid BCL11A expression. Here we develop pooled clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 guide RNA libraries to perform in situ saturating mutagenesis of the human and mouse enhancers. This approach reveals critical minimal features and discrete vulnerabilities of these enhancers. Despite conserved function of the composite enhancers, their architecture diverges. The crucial human sequences appear to be primate-specific. Through editing of primary human progenitors and mouse transgenesis, we validate the BCL11A erythroid enhancer as a target for fetal haemoglobin reinduction. The detailed enhancer map will inform therapeutic genome editing, and the screening approach described here is generally applicable to functional interrogation of non-coding genomic elements. A CRISPR-Cas9 approach is used to perform saturating mutagenesis of the human and mouse BCL11A enhancers, producing a map that reveals critical regions and specific vulnerabilities; BCL11A enhancer disruption is validated by CRISPR-Cas9 as a therapeutic strategy for inducing fetal haemoglobin by applying it in both mice and primary human erythroblast cells. BCL11A is a transcriptional repressor that inhibits expression of fetal globin genes in adults, and is a potential therapeutic target for the treatment of β-globinopathies such as β-thalassemia and sickle cell disease. The enhancer of BCL11A is subject to common genetic variation associated with fetal hemoglobin level. Here, Daniel Bauer and colleagues use a CRISPR–Cas9 approach to perform saturation mutagenesis of the human and mouse BCL11A enhancers, producing a map that reveals critical regions and specific vulnerabilities. They validate BCL11A enhancer disruption by CRISPR–Cas9 as a therapeutic strategy for inducing fetal haemoglobin by applying it in both mice and primary human erythroblast cells.
0
Citation781
0
Save
0

Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood–brain barrier dysfunction module

Roeben Munji et al.Oct 14, 2019
Blood vessels in the CNS form a specialized and critical structure, the blood–brain barrier (BBB). We present a resource to understand the molecular mechanisms that regulate BBB function in health and dysfunction during disease. Using endothelial cell enrichment and RNA sequencing, we analyzed the gene expression of endothelial cells in mice, comparing brain endothelial cells with peripheral endothelial cells. We also assessed the regulation of CNS endothelial gene expression in models of stroke, multiple sclerosis, traumatic brain injury and seizure, each having profound BBB disruption. We found that although each is caused by a distinct trigger, they exhibit strikingly similar endothelial gene expression changes during BBB disruption, comprising a core BBB dysfunction module that shifts the CNS endothelial cells into a peripheral endothelial cell-like state. The identification of a common pathway for BBB dysfunction suggests that targeting therapeutic agents to limit it may be effective across multiple neurological disorders. Munji et al. analyzed the transcriptomes of endothelial cells from multiple organs and in neural tissue of neurological disease models. They identified a blood–brain barrier dysfunction module in seizure, multiple sclerosis, stroke and brain trauma.
0
Citation243
0
Save
1

Deconstructing Intratumoral Heterogeneity through Multiomic and Multiscale Analysis of Serial Sections

Patrick Schupp et al.Jun 22, 2023
Tumors may contain billions of cells including distinct malignant clones and nonmalignant cell types. Clarifying the evolutionary histories, prevalence, and defining molecular features of these cells is essential for improving clinical outcomes, since intratumoral heterogeneity provides fuel for acquired resistance to targeted therapies. Here we present a statistically motivated strategy for deconstructing intratumoral heterogeneity through multiomic and multiscale analysis of serial tumor sections (MOMA). By combining deep sampling of IDH-mutant astrocytomas with integrative analysis of single-nucleotide variants, copy-number variants, and gene expression, we reconstruct and validate the phylogenies, spatial distributions, and transcriptional profiles of distinct malignant clones. By genotyping nuclei analyzed by single-nucleus RNA-seq for truncal mutations, we further show that commonly used algorithms for identifying cancer cells from single-cell transcriptomes may be inaccurate. We also demonstrate that correlating gene expression with tumor purity in bulk samples can reveal optimal markers of malignant cells and use this approach to identify a core set of genes that is consistently expressed by astrocytoma truncal clones, including AKR1C3, whose expression is associated with poor outcomes in several types of cancer. In summary, MOMA provides a robust and flexible strategy for precisely deconstructing intratumoral heterogeneity and clarifying the core molecular properties of distinct cellular populations in solid tumors.
0

Machine intelligence identifies soluble TNFa as a therapeutic target for spinal cord injury

J. Huie et al.Jul 24, 2020
SUMMARY Traumatic spinal cord injury (SCI) produces a complex syndrome that is expressed across multiple endpoints ranging from molecular and cellular changes to functional behavioral deficits. Effective therapeutic strategies for CNS injury are therefore likely to manifest multi-factorial effects across a broad range of biological and functional outcome measures. Thus, multivariate analytic approaches are needed to capture the linkage between biological and neurobehavioral outcomes. Injury-induced neuroinflammation (NI) presents a particularly challenging therapeutic target, since NI is involved in both degeneration and repair 1,2 . Here, we used big-data integration and large-scale analytics to examine a large dataset of preclinical efficacy tests combining 5 different blinded, fully counter-balanced treatment trials for different acute anti-inflammatory treatments for cervical spinal cord injury in rats. Multi-dimensional discovery, using topological data analysis 3 (TDA) and principal components analysis (PCA) revealed that only one showed consistent multidimensional syndromic benefit: intrathecal application of recombinant soluble TNFα receptor 1 (sTNFR1), which showed an inverse-U dose response efficacy. Using the optimal acute dose, we showed that clinically-relevant 90 min delayed treatment profoundly affected multiple biological indices of NI in the first 48 hrs after injury, including reduction in pro-inflammatory cytokines and gene expression of a coherent complex of acute inflammatory mediators and receptors. Further, a 90 min delayed bolus dose of sTNFR1 reduced the expression of NI markers in the chronic perilesional spinal cord, and consistently improved neurological function over 6 weeks post SCI. These results provide validation of a novel strategy for precision preclinical drug discovery that is likely to improve translation in the difficult landscape of CNS trauma, and confirm the importance of TNFα signaling as a therapeutic target.