CW
Christopher Ward
Author with expertise in Molecular Mechanisms of Muscle Regeneration and Atrophy
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(81% Open Access)
Cited by:
1,962
h-index:
45
/
i10-index:
95
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Angiotensin II type 1 receptor blockade attenuates TGF-β–induced failure of muscle regeneration in multiple myopathic states

Ronald Cohn et al.Jan 21, 2007
Skeletal muscle has the ability to achieve rapid repair in response to injury or disease1. Many individuals with Marfan syndrome (MFS), caused by a deficiency of extracellular fibrillin-1, exhibit myopathy and often are unable to increase muscle mass despite physical exercise. Evidence suggests that selected manifestations of MFS reflect excessive signaling by transforming growth factor (TGF)-β (refs. 2,3). TGF-β is a known inhibitor of terminal differentiation of cultured myoblasts; however, the functional contribution of TGF-β signaling to disease pathogenesis in various inherited myopathic states in vivo remains unknown4,5. Here we show that increased TGF-β activity leads to failed muscle regeneration in fibrillin-1–deficient mice. Systemic antagonism of TGF-β through administration of TGF-β–neutralizing antibody or the angiotensin II type 1 receptor blocker losartan normalizes muscle architecture, repair and function in vivo. Moreover, we show TGF-β–induced failure of muscle regeneration and a similar therapeutic response in a dystrophin-deficient mouse model of Duchenne muscular dystrophy. NOTE: In the version of this article initially published, the same panels were inadvertently used to show negative pSmad2/3 and periostin staining in muscle of Fbn1C1039G/+ mice treated with TGF-β‐neutralizing antibody in both the steady-state (Fig. 1a, right column, second and third rows, respectively) and muscle-regeneration (Fig. 1b, right column, third and fourth rows, respectively) experiments. In reality, these images only relate to the steady-state experiment (Fig. 1a). The intended images for Figure 1b are provided (red, pSmad2/3 staining; green, periostin staining). As both sets of images show negative staining in neutralizing antibody–treated Fbn1C1039G/+ mice, this does not alter any observations or conclusions discussed in the manuscript. The error has been corrected in the HTML and PDF versions of the article.
0
Citation642
0
Save
0

Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice

Stephan Lehnart et al.May 1, 2008
The Ca2+ release channel ryanodine receptor 2 (RyR2) is required for excitation-contraction coupling in the heart and is also present in the brain. Mutations in RyR2 have been linked to exercise-induced sudden cardiac death (catecholaminergic polymorphic ventricular tachycardia [CPVT]). CPVT-associated RyR2 mutations result in “leaky” RyR2 channels due to the decreased binding of the calstabin2 (FKBP12.6) subunit, which stabilizes the closed state of the channel. We found that mice heterozygous for the R2474S mutation in Ryr2 (Ryr2-R2474S mice) exhibited spontaneous generalized tonic-clonic seizures (which occurred in the absence of cardiac arrhythmias), exercise-induced ventricular arrhythmias, and sudden cardiac death. Treatment with a novel RyR2-specific compound (S107) that enhances the binding of calstabin2 to the mutant Ryr2-R2474S channel inhibited the channel leak and prevented cardiac arrhythmias and raised the seizure threshold. Thus, CPVT-associated mutant leaky Ryr2-R2474S channels in the brain can cause seizures in mice, independent of cardiac arrhythmias. Based on these data, we propose that CPVT is a combined neurocardiac disorder in which leaky RyR2 channels in the brain cause epilepsy, and the same leaky channels in the heart cause exercise-induced sudden cardiac death.
0

Microtubules Underlie Dysfunction in Duchenne Muscular Dystrophy

Ramzi Khairallah et al.Aug 7, 2012
Duchenne muscular dystrophy (DMD) is a fatal X-linked degenerative muscle disease caused by the absence of the microtubule-associated protein dystrophin, which results in a disorganized and denser microtubule cytoskeleton. In addition, mechanotransduction-dependent activation of calcium (Ca(2+)) and reactive oxygen species (ROS) signaling underpins muscle degeneration in DMD. We show that in muscle from adult mdx mice, a model of DMD, a brief physiologic stretch elicited microtubule-dependent activation of NADPH (reduced-form nicotinamide adenine dinucleotide phosphate) oxidase-dependent production of ROS, termed X-ROS. Further, X-ROS amplified Ca(2+) influx through stretch-activated channels in mdx muscle. Consistent with the importance of the microtubules to the dysfunction in mdx muscle, muscle cells with dense microtubule structure, such as those from adult mdx mice or from young wild-type mice treated with Taxol, showed increased X-ROS production and Ca(2+) influx, whereas cells with a less dense microtubule network, such as young mdx or adult mdx muscle treated with colchicine or nocodazole, showed little ROS production or Ca(2+) influx. In vivo treatments that disrupted the microtubule network or inhibited NADPH oxidase 2 reduced contraction-induced injury in adult mdx mice. Furthermore, transcriptome analysis identified increased expression of X-ROS-related genes in human DMD skeletal muscle. Together, these data show that microtubules are the proximate element responsible for the dysfunction in Ca(2+) and ROS signaling in DMD and could be effective therapeutic targets for intervention.
0
Citation237
0
Save
11

Disparate Bone Anabolic Cues Activate Bone Formation by Regulating the Rapid Lysosomal Degradation of Sclerostin Protein

Nicole Gould et al.Oct 26, 2020
Abstract The down regulation of sclerostin mediates bone formation in response to mechanical cues and parathyroid hormone (PTH). To date, the regulation of sclerostin has been attributed exclusively to the transcriptional downregulation that occurs hours after stimulation. Here, we describe, for the first time, the rapid post-translational degradation of sclerostin protein by the lysosome following mechanical load or PTH. We present a unifying model, integrating both new and established mechanically- and hormonally-activated effectors into the regulated degradation of sclerostin by lysosomes. Using an in vivo mechanical loading model, we find transient inhibition of lysosomal degradation or the upstream mechano-signaling pathway controlling sclerostin abundance impairs subsequent load-induced bone formation. We also link dysfunctional lysosomes to aberrant sclerostin regulation using Gaucher disease iPSCs. These results inform a paradigm shift in how bone anabolic cues post-translationally regulate sclerostin and expands our understanding of how osteocytes regulate this fundamentally important protein to regulate bone formation.
11
Citation2
0
Save
0

Optogenetic activation of muscle contraction in vivo

Elahe Ganji et al.Jul 8, 2020
Abstract Optogenetics is an emerging alternative to traditional electrical stimulation to initiate action potentials in activatable cells both ex vivo and in vivo. Optogenetics has been commonly used in mammalian neurons and more recently, it has been adapted for activation of cardiomyocytes and skeletal muscle. Therefore, the aim of this study was to evaluate the stimulation feasibility and sustain isometric muscle contraction and limit decay for an extended period of time (1s), using non-invasive transdermal light activation of skeletal muscle (triceps surae) in vivo. We used inducible Cre recombination to target expression of Channelrhodopsin-2 (ChR2(H134R)-EYFP) in skeletal muscle (Acta1-Cre) in mice. Fluorescent imaging confirmed that ChR2 expression is localized in skeletal muscle and does not have specific expression in sciatic nerve branch, therefore, allowing for non-nerve mediated optical stimulation of skeletal muscle. We induced muscle contraction using transdermal exposure to blue light and selected 10Hz stimulation after controlled optimization experiments to sustain prolonged muscle contraction. Increasing the stimulation frequency from 10Hz to 40Hz increased the muscle contraction decay during prolonged 1s stimulation, highlighting frequency dependency and importance of membrane repolarization for effective light activation. Finally, we showed that optimized pulsed optogenetic stimulation of 10 Hz resulted in comparable ankle torque and contractile functionality to that of electrical stimulation. Our results demonstrate the feasibility and repeatability of non-invasive optogenetic stimulation of muscle in vivo and highlight optogenetic stimulation as a powerful tool for non-invasive in vivo direct activation of skeletal muscle.
Load More