Abstract Rationale Lymphatics are essential for cardiac health, and insufficient lymphatic expansion (lymphangiogenesis) contributes to development of heart failure (HF) after myocardial infarction. However, the regulation and impact of lymphatics in non-ischemic cardiomyopathy induced by pressure-overload remains to be determined. Objective Investigate cardiac lymphangiogenesis following transverse aortic constriction (TAC) in adult male or female C57Bl/6J or Balb/c mice, and in patients with end-stage HF. Methods & Result Cardiac function was evaluated by echocardiography, and cardiac hypertrophy, lymphatics, inflammation, edema, and fibrosis by immunohistochemistry, flow cytometry, microgravimetry, and gene expression analysis, respectively. Treatment with neutralizing anti-VEGFR3 antibodies was applied to inhibit cardiac lymphangiogenesis in mice. The gender- and strain-dependent mouse cardiac hypertrophic response to TAC, especially increased ventricular wall stress, led to lymphatic expansion in the heart. Our experimental findings that ventricular dilation triggered cardiac lymphangiogenesis was mirrored by observations in clinical HF samples, with increased lymphatic density found in patients with dilated cardiomyopathy. Surprisingly, the striking lymphangiogenesis observed post-TAC in Balb/c mice, linked to increased cardiac Vegfc, did not suffice to resolve myocardial edema, and animals progressed to dilated cardiomyopathy and HF. Conversely, selective inhibition of the essentially Vegfd-driven capillary lymphangiogenesis observed post-TAC in male C57Bl/6J mice did not significantly aggravate cardiac edema. However, cardiac immune cell levels were increased, notably myeloid cells at 3 weeks and T lymphocytes at 8 weeks. Moreover, while the TAC-triggered development of interstitial cardiac fibrosis was unaffected by anti-VEGFR3, inhibition of lymphangiogenesis increased perivascular fibrosis and accelerated the development of left ventricular dilation and cardiac dysfunction. Conclusions We demonstrate for the first time that endogenous cardiac lymphangiogenesis limits pressure-overload-induced cardiac inflammation and perivascular fibrosis, thus delaying HF development. While these findings remain to be confirmed in a larger study of HF patients, we propose that under settings of pressure-overload poor cardiac lymphangiogenesis may accelerate HF development.