KK
Kajsa Kanebratt
Author with expertise in 3D Bioprinting Technology
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
552
h-index:
13
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Evaluation of HepaRG Cells as an in Vitro Model for Human Drug Metabolism Studies

Kajsa Kanebratt et al.Apr 2, 2008
HepaRG cells, a newly developed human hepatoma cell line, differentiate into hepatocyte-like morphology by treatment with dimethyl sulfoxide (DMSO). The expression of cytochrome P450 (P450) enzymes, transporter proteins, and transcription factors was stable in differentiated HepaRG cells over a period of 6 weeks when cultured with DMSO. Compared with human hepatocytes, expression of P450 in HepaRG cells was in general lower with the exception for a considerably higher expression of CYP3A4 and CYP7A1. The expression of P450s generally decreased when DMSO was removed from the medium, whereas transporters and liver-specific factors were unaffected. The relative mRNA content of drug-metabolizing P450s displayed the highest resemblance between human hepatocytes and differentiated HepaRG cells 1 day after removal of DMSO from the medium. The metabolism of midazolam, naloxone, and clozapine in HepaRG cells was similar to human hepatocytes, indicating the function of CYP3A4, CYP1A2, and UDP-glucuronosyltransferase enzymes. However, the metabolism of 7-ethoxycoumarin and dextromethorphan was low, confirming low levels of CYP2E1 and CYP2D6 in HepaRG cells. The P450 probe substrates indicate a decrease in CYP1A2, CYP2B6, CYP2C9, and CYP3A4 activities in HepaRG cells 1 day after removal of DMSO from the medium. The activities were then relatively stable in DMSO-free medium for up to 14 days. Based on the stable expression of liver-specific functions over a long period in culture, the relative mRNA content of drug-metabolizing P450s, and metabolic properties, HepaRG cells provide a valuable in vitro model for human drug metabolism studies.
0
Citation327
0
Save
0

Functional coupling of human pancreatic islets and liver spheroids on-a-chip: Towards a novel human ex vivo type 2 diabetes model

Sophie Bauer et al.Oct 30, 2017
Human in vitro physiological models studying disease and drug treatment effects are urgently needed as more relevant tools to identify new drug targets and therapies. We have developed a human microfluidic two-organ-chip model to study pancreatic islet-liver cross-talk based on insulin and glucose regulation. We have established a robust co-culture of human pancreatic islet microtissues and liver spheroids maintaining functional responses up to 15 days in an insulin-free medium. Functional coupling, demonstrated by insulin released from the islet microtissues in response to a glucose load applied in glucose tolerance tests on different days, promoted glucose uptake by the liver spheroids. Co-cultures maintained postprandial glucose concentrations in the circulation whereas glucose levels remained elevated in both single cultures. Thus, insulin secreted into the circulation stimulated glucose uptake by the liver spheroids, while the latter, in the absence of insulin, did not consume glucose as efficiently. As the glucose concentration fell, insulin secretion subsided, demonstrating a functional feedback loop between the liver and the insulin-secreting islet microtissues. Finally, inter-laboratory validation verified robustness and reproducibility. Further development of this model using tools inducing impaired glucose regulation should provide a unique in vitro system emulating human type 2 diabetes mellitus.
2

Integrated experimental-computational analysis of a liver-islet microphysiological system for human-centric diabetes research

Belén Casas et al.Aug 19, 2021
Abstract Microphysiological systems (MPS) are powerful tools for emulating human physiology and replicating disease progression in vitro . MPS could be better predictors of human outcome than current animal models, but mechanistic interpretation and in vivo extrapolation of the experimental results remain significant challenges. Here, we address these challenges using an integrated experimental-computational approach. This approach allows for in silico representation and predictions of glucose metabolism in a previously reported MPS with two organ compartments (liver and pancreas) connected in a closed loop with circulating medium. We developed a computational model describing glucose metabolism over 15 days of culture in the MPS. The model was calibrated on an experiment-specific basis using data from seven experiments, where single-liver or liver-islet cultures were exposed to both normal and hyperglycemic conditions resembling high blood glucose levels in diabetes. The calibrated models reproduced the fast (i.e. hourly) variations in glucose and insulin observed in the MPS experiments, as well as the long-term (i.e. over weeks) decline in both glucose tolerance and insulin secretion. We also investigated the behavior of the system under hypoglycemia by simulating this condition in silico , and the model could correctly predict the glucose and insulin responses measured in new MPS experiments. Last, we used the computational model to translate the experimental results to humans, showing good agreement with published data of the glucose response to a meal in healthy subjects. The integrated experimental-computational framework opens new avenues for future investigations toward disease mechanisms and the development of new therapies for metabolic disorders.
2
Citation1
0
Save
1

3D Cell Aggregates Amplify Diffusion Signals

Hamidreza Arjmandi et al.Jun 29, 2023
Abstract Biophysical models can predict the behavior of cell cultures including 3D cell aggregates (3DCAs), thereby reducing the need for costly and time-consuming experiments. Specifically, mass transfer models enable studying the transport of nutrients, oxygen, signaling molecules, and drugs in 3DCA. These models require the defining of boundary conditions (BC) between the 3DCA and surrounding medium. However, accurately modeling the BC that relates the inner and outer boundary concentrations at the border between the 3DCA and the medium remains a challenge that this paper addresses using both theoretical and experimental methods. The provided biophysical analysis indicates that the concentration of molecules inside boundary is higher than that at the outer boundary, revealing an amplification factor that is confirmed by a particle-based simulator (PBS). Due to the amplification factor, the PBS confirms that when a 3DCA with a low concentration of target molecules is introduced to a culture medium with a higher concentration, the molecule concentration in the medium rapidly decreases. The theoretical model and PBS simulations were used to design a pilot experiment with liver spheroids as the 3DCA and glucose as the target molecule. Experimental results agree with the proposed theory and derived properties. Author summary The primary objective of our research was to enable the development of reliable biophysical models for three-dimensional cell aggregates (3DCAs). To achieve this goal, we employed a combination of theoretical and experimental methods to derive and characterize the amplification boundary condition (BC), which represents the relation of inner and outer boundary concentrations at the border between a 3DCA and its surrounding medium. By understanding the amplificaiton BC, we can better comprehend the transport and diffusion processes that occur within 3DCAs. The significance of our research lies in its potential to advance the understanding of 3DCAs and their underlying biophysical processes. This knowledge is crucial for a wide range of applications, including drug design and analysis of drug dosages within tissues. This factor may provide insight into the mechanisms behind tumor development and morphogenesis. In particular, the packed structure of cancer tumors enables them to receive and trap a higher concentration of nutrients and oxygen molecules based on the amplification factor. Thus, this study could contribute to the development of novel approaches to manage and treat cancerous tissues.
1

Diseased human pancreas and liver microphysiological system for preclinical diabetes research

S. Rigal et al.Jul 3, 2023
ABSTRACT Current research on metabolic disorders such as type 2 diabetes relies on animal models because multi-organ diseases cannot be well studied with the standard in vitro assays. Here, we connect models of key metabolism organs, pancreas and liver, on a microfluidic chip to enable diabetes research in a human-based preclinical system. Aided by mechanistic mathematical modelling, we developed a two-organ microphysiological system (MPS) that replicates clinically-relevant phenotypes of diabetic dysregulation both in the liver and pancreas compartments. Exposure to hyperglycemia and high cortisone created a diseased pancreas-liver MPS which displayed beta-cell dysfunction, steatosis, elevated ketone-body secretion, increased glycogen storage, and upregulated gluconeogenic machinery. In turn, normoglycemia and physiological cortisone concentration maintained glucose tolerance and stable liver and beta-cell functions. This method was evaluated for repeatability in two laboratories and was effective in multiple pancreatic islet donors. The model also provides a platform to identify new therapeutic targets as demonstrated with a liver-secreted IL-1R2 protein that induced islet proliferation.