PL
Poching Liu
Author with expertise in Gene Therapy Techniques and Applications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
1,187
h-index:
21
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The lymph node microenvironment promotes B-cell receptor signaling, NF-κB activation, and tumor proliferation in chronic lymphocytic leukemia

Yair Herishanu et al.Oct 13, 2010
Abstract Chronic lymphocytic leukemia (CLL), an incurable malignancy of mature B lymphocytes, involves blood, bone marrow, and secondary lymphoid organs such as the lymph nodes (LN). A role of the tissue microenvironment in the pathogenesis of CLL is hypothesized based on in vitro observations, but its contribution in vivo remains ill-defined. To elucidate the effects of tumor-host interactions in vivo, we purified tumor cells from 24 treatment-naive patients. Samples were obtained concurrently from blood, bone marrow, and/or LN and analyzed by gene expression profiling. We identified the LN as a key site in CLL pathogenesis. CLL cells in the LN showed up-regulation of gene signatures, indicating B-cell receptor (BCR) and nuclear factor-κB activation. Consistent with antigen-dependent BCR signaling and canonical nuclear factor-κB activation, we detected phosphorylation of SYK and IκBα, respectively. Expression of BCR target genes was stronger in clinically more aggressive CLL, indicating more effective BCR signaling in this subtype in vivo. Tumor proliferation, quantified by the expression of the E2F and c-MYC target genes and verified with Ki67 staining by flow cytometry, was highest in the LN and was correlated with clinical disease progression. These data identify the disruption of tumor microenvironment interactions and the inhibition of BCR signaling as promising therapeutic strategies in CLL. This study is registered at http://clinicaltrials.gov as NCT00019370.
0

A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis

Martina Absinta et al.Sep 8, 2021
Multiple sclerosis (MS) lesions that do not resolve in the months after they form harbour ongoing demyelination and axon degeneration, and are identifiable in vivo by their paramagnetic rims on MRI scans1–3. Here, to define mechanisms underlying this disabling, progressive neurodegenerative state4–6 and foster development of new therapeutic agents, we used MRI-informed single-nucleus RNA sequencing to profile the edge of demyelinated white matter lesions at various stages of inflammation. We uncovered notable glial and immune cell diversity, especially at the chronically inflamed lesion edge. We define ‘microglia inflamed in MS’ (MIMS) and ‘astrocytes inflamed in MS’, glial phenotypes that demonstrate neurodegenerative programming. The MIMS transcriptional profile overlaps with that of microglia in other neurodegenerative diseases, suggesting that primary and secondary neurodegeneration share common mechanisms and could benefit from similar therapeutic approaches. We identify complement component 1q (C1q) as a critical mediator of MIMS activation, validated immunohistochemically in MS tissue, genetically by microglia-specific C1q ablation in mice with experimental autoimmune encephalomyelitis, and therapeutically by treating chronic experimental autoimmune encephalomyelitis with C1q blockade. C1q inhibition is a potential therapeutic avenue to address chronic white matter inflammation, which could be monitored by longitudinal assessment of its dynamic biomarker, paramagnetic rim lesions, using advanced MRI methods. Single-nucleus transcriptomics defines a diverse set of immune and glial cells at the chronically inflamed leading edge of demyelinated white matter lesions in patients with multiple sclerosis.
0
Citation412
0
Save
1

Post-Transplant Administration of G-CSF Impedes Engraftment of Gene Edited Human Hematopoietic Stem Cells by Exacerbating the p53-Mediated DNA Damage Response

Daisuke Araki et al.Jun 30, 2023
Granulocyte colony stimulating factor (G-CSF) is commonly used as adjunct treatment to hasten recovery from neutropenia following chemotherapy and autologous transplantation of hematopoietic stem and progenitor cells (HSPCs) for malignant disorders. However, the utility of G-CSF administration after ex vivo gene therapy procedures targeting human HSPCs has not been thoroughly evaluated. Here, we provide evidence that post-transplant administration of G-CSF impedes engraftment of CRISPR-Cas9 gene edited human HSPCs in xenograft models. G-CSF acts by exacerbating the p53-mediated DNA damage response triggered by Cas9- mediated DNA double-stranded breaks. Transient p53 inhibition in culture attenuates the negative impact of G-CSF on gene edited HSPC function. In contrast, post-transplant administration of G-CSF does not impair the repopulating properties of unmanipulated human HSPCs or HSPCs genetically engineered by transduction with lentiviral vectors. The potential for post-transplant G-CSF administration to aggravate HSPC toxicity associated with CRISPR-Cas9 gene editing should be considered in the design of ex vivo autologous HSPC gene editing clinical trials.