Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
JX
Jinye Xiong
Author with expertise in Pancreatic Islet Dysfunction and Regeneration
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
6
h-index:
5
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Lithocholic acid binds TULP3 to activate sirtuins and AMPK to slow down ageing

Qi Qu et al.Dec 18, 2024
Lithocholic acid (LCA) is accumulated in mammals during calorie restriction and it can activate AMP-activated protein kinase (AMPK) to slow down ageing1. However, the molecular details of how LCA activates AMPK and induces these biological effects are unclear. Here we show that LCA enhances the activity of sirtuins to deacetylate and subsequently inhibit vacuolar H+-ATPase (v-ATPase), which leads to AMPK activation through the lysosomal glucose-sensing pathway. Proteomics analyses of proteins that co-immunoprecipitated with sirtuin 1 (SIRT1) identified TUB-like protein 3 (TULP3), a sirtuin-interacting protein2, as a LCA receptor. In detail, LCA-bound TULP3 allosterically activates sirtuins, which then deacetylate the V1E1 subunit of v-ATPase on residues K52, K99 and K191. Muscle-specific expression of a V1E1 mutant (3KR), which mimics the deacetylated state, strongly activates AMPK and rejuvenates muscles in aged mice. In nematodes and flies, LCA depends on the TULP3 homologues tub-1 and ktub, respectively, to activate AMPK and extend lifespan and healthspan. Our study demonstrates that activation of the TULP3–sirtuin–v-ATPase–AMPK pathway by LCA reproduces the benefits of calorie restriction. The molecular mechanism underlying how lithocholic acid recapitulates the lifespan and healthspan benefits of calorie restriction is revealed to involve TULP3, sirtuins, v-ATPase and AMPK.
0
Citation4
0
Save
0

AMPK targets PDZD8 to trigger carbon source shift from glucose to glutamine

Mengqi Li et al.Jun 19, 2024
Abstract The shift of carbon utilization from primarily glucose to other nutrients is a fundamental metabolic adaptation to cope with decreased blood glucose levels and the consequent decline in glucose oxidation. AMP-activated protein kinase (AMPK) plays crucial roles in this metabolic adaptation. However, the underlying mechanism is not fully understood. Here, we show that PDZ domain containing 8 (PDZD8), which we identify as a new substrate of AMPK activated in low glucose, is required for the low glucose-promoted glutaminolysis. AMPK phosphorylates PDZD8 at threonine 527 (T527) and promotes the interaction of PDZD8 with and activation of glutaminase 1 (GLS1), a rate-limiting enzyme of glutaminolysis. In vivo, the AMPK-PDZD8-GLS1 axis is required for the enhancement of glutaminolysis as tested in the skeletal muscle tissues, which occurs earlier than the increase in fatty acid utilization during fasting. The enhanced glutaminolysis is also observed in macrophages in low glucose or under acute lipopolysaccharide (LPS) treatment. Consistent with a requirement of heightened glutaminolysis, the PDZD8-T527A mutation dampens the secretion of pro-inflammatory cytokines in macrophages in mice treated with LPS. Together, we have revealed an AMPK-PDZD8-GLS1 axis that promotes glutaminolysis ahead of increased fatty acid utilization under glucose shortage.
0
Citation2
0
Save
1

AMPK targets PDZD8 to trigger carbon source shift to glutamine

Mengqi Li et al.Jul 20, 2023
The shift of carbon utilisation from glucose to other nutrients is a fundamental metabolic adaptation to cope with the decreased glucose oxidation during fasting or starvation 1 . AMP-activated protein kinase (AMPK) plays crucial roles in manifesting physiological benefits accompanying glucose starvation or calorie restriction 2 . However, the underlying mechanisms are unclear. Here, we show that low glucose-induced activation of AMPK plays a decisive role in the shift of carbon utilisation from glucose to glutamine. We demonstrate that endoplasmic reticulum (ER)-localised PDZD8, which we identify to be a new substrate of AMPK, is required for the glucose starvation-promoted glutaminolysis. AMPK phosphorylates PDZD8 at threonine 527 (T527), and promotes it to interact with and activate the mitochondrial glutaminase 1 (GLS1), a rate-limiting enzyme of glutaminolysis 3–5 , and as a result the ER-mitochondria contact is strengthened. In vivo, PDZD8 enhances glutaminolysis, and triggers mitohormesis that is required for extension of lifespan and healthspan in Caenorhabditis elegans subjected to glucose starvation or caloric restriction. Muscle-specific re-introduction of wildtype PDZD8, but not the AMPK-unphosphorylable PDZD8-T527A mutant, to PDZD8 −/− mice is able to rescue the increase of glutaminolysis, and the rejuvenating effects of caloric restriction in aged mice, including grip strength and running capacity. Together, these findings reveal an AMPK-PDZD8-GLS1 axis that promotes glutaminolysis and executes the anti-ageing effects of calorie restriction by promoting inter-organelle crosstalk between ER and mitochondria.