YD
Yuemei Dong
Author with expertise in Insect Symbiosis and Microbial Interactions
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(87% Open Access)
Cited by:
3,326
h-index:
37
/
i10-index:
56
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Implication of the Mosquito Midgut Microbiota in the Defense against Malaria Parasites

Yuemei Dong et al.May 7, 2009
Malaria-transmitting mosquitoes are continuously exposed to microbes, including their midgut microbiota. This naturally acquired microbial flora can modulate the mosquito's vectorial capacity by inhibiting the development of Plasmodium and other human pathogens through an unknown mechanism. We have undertaken a comprehensive functional genomic approach to elucidate the molecular interplay between the bacterial co-infection and the development of the human malaria parasite Plasmodium falciparum in its natural vector Anopheles gambiae. Global transcription profiling of septic and aseptic mosquitoes identified a significant subset of immune genes that were mostly up-regulated by the mosquito's microbial flora, including several anti-Plasmodium factors. Microbe-free aseptic mosquitoes displayed an increased susceptibility to Plasmodium infection while co-feeding mosquitoes with bacteria and P. falciparum gametocytes resulted in lower than normal infection levels. Infection analyses suggest the bacteria-mediated anti-Plasmodium effect is mediated by the mosquitoes' antimicrobial immune responses, plausibly through activation of basal immunity. We show that the microbiota can modulate the anti-Plasmodium effects of some immune genes. In sum, the microbiota plays an essential role in modulating the mosquito's capacity to sustain Plasmodium infection.
0
Paper
Citation683
0
Save
0

Anopheles gambiae Immune Responses to Human and Rodent Plasmodium Parasite Species

Yuemei Dong et al.Jun 5, 2006
Transmission of malaria is dependent on the successful completion of the Plasmodium lifecycle in the Anopheles vector. Major obstacles are encountered in the midgut tissue, where most parasites are killed by the mosquito's immune system. In the present study, DNA microarray analyses have been used to compare Anopheles gambiae responses to invasion of the midgut epithelium by the ookinete stage of the human pathogen Plasmodium falciparum and the rodent experimental model pathogen P. berghei. Invasion by P. berghei had a more profound impact on the mosquito transcriptome, including a variety of functional gene classes, while P. falciparum elicited a broader immune response at the gene transcript level. Ingestion of human malaria-infected blood lacking invasive ookinetes also induced a variety of immune genes, including several anti-Plasmodium factors. Twelve selected genes were assessed for effect on infection with both parasite species and bacteria using RNAi gene silencing assays, and seven of these genes were found to influence mosquito resistance to both parasite species. An MD2-like receptor, AgMDL1, and an immunolectin, FBN39, showed specificity in regulating only resistance to P. falciparum, while the antimicrobial peptide gambicin and a novel putative short secreted peptide, IRSP5, were more specific for defense against the rodent parasite P. berghei. While all the genes that affected Plasmodium development also influenced mosquito resistance to bacterial infection, four of the antimicrobial genes had no effect on Plasmodium development. Our study shows that the impact of P. falciparum and P. berghei infection on A. gambiae biology at the gene transcript level is quite diverse, and the defense against the two Plasmodium species is mediated by antimicrobial factors with both universal and Plasmodium-species specific activities. Furthermore, our data indicate that the mosquito is capable of sensing infected blood constituents in the absence of invading ookinetes, thereby inducing anti-Plasmodium immune responses.
0
Citation413
0
Save
0

Chromobacterium Csp_P Reduces Malaria and Dengue Infection in Vector Mosquitoes and Has Entomopathogenic and In Vitro Anti-pathogen Activities

José Ramírez et al.Oct 23, 2014
Plasmodium and dengue virus, the causative agents of the two most devastating vector-borne diseases, malaria and dengue, are transmitted by the two most important mosquito vectors, Anopheles gambiae and Aedes aegypti, respectively. Insect-bacteria associations have been shown to influence vector competence for human pathogens through multi-faceted actions that include the elicitation of the insect immune system, pathogen sequestration by microbes, and bacteria-produced anti-pathogenic factors. These influences make the mosquito microbiota highly interesting from a disease control perspective. Here we present a bacterium of the genus Chromobacterium (Csp_P), which was isolated from the midgut of field-caught Aedes aegypti. Csp_P can effectively colonize the mosquito midgut when introduced through an artificial nectar meal, and it also inhibits the growth of other members of the midgut microbiota. Csp_P colonization of the midgut tissue activates mosquito immune responses, and Csp_P exposure dramatically reduces the survival of both the larval and adult stages. Ingestion of Csp_P by the mosquito significantly reduces its susceptibility to Plasmodium falciparum and dengue virus infection, thereby compromising the mosquito's vector competence. This bacterium also exerts in vitro anti-Plasmodium and anti-dengue activities, which appear to be mediated through Csp_P -produced stable bioactive factors with transmission-blocking and therapeutic potential. The anti-pathogen and entomopathogenic properties of Csp_P render it a potential candidate for the development of malaria and dengue control strategies.
0
Paper
Citation270
0
Save
114

Glyphosate Inhibits Melanization and Increases Susceptibility to Infection in Insects

Daniel Smith et al.May 20, 2020
ABSTRACT Melanin, a black-brown pigment found throughout all kingdoms of life, has diverse biological functions including: UV protection, thermoregulation, oxidant scavenging, arthropod immunity, and microbial virulence. Given melanin’s broad roles in the biosphere, particularly in insect immune defenses, it is important to understand how exposure to ubiquitous environmental contaminants affects melanization. Glyphosate – the most widely used herbicide globally – inhibits melanin production, which could have wide-ranging implications in the health of many organisms, including insects. Here, we demonstrate that glyphosate has deleterious effects on insect health in two evolutionary distant species, Galleria mellonella (Lepidoptera: Pyralidae) and Anopheles gambiae (Diptera: Culicidae), suggesting a broad effect in insects. Glyphosate reduced survival of G. mellonella caterpillars following infection with the fungus Cryptococcus neoformans and decreased the size of melanized nodules formed in hemolymph, which normally help eliminate infection. Glyphosate also increased the burden of the malaria- causing parasite Plasmodium falciparum in A. gambiae mosquitoes, altered uninfected mosquito survival, and perturbed the microbial composition of adult mosquito midguts. Our results show that glyphosate’s mechanism of melanin inhibition involves antioxidant synergy and disruption of the reaction oxidation-reduction balance Overall, these findings suggest that glyphosate’s environmental accumulation could render insects more susceptible to microbial pathogens due to melanin inhibition, immune impairment, and perturbations in microbiota composition, potentially contributing to declines in insect populations.
114
Citation2
0
Save
9

AgMESH, a peritrophic matrix-associated protein embedded in Anopheles gambiae melanotic capsules modulates malaria parasite infection

Emma Camacho et al.May 8, 2021
Abstract Melanins are structurally complex pigments produced by organisms in all domains of life. In insects, melanins are essential for survival and have key roles in cuticle sclerotization, wound healing and innate immunity. In this study, we used a diverse set of molecular, biochemical, and imaging approaches to characterize mosquito melanin involved in innate immune defense (melanotic capsules). We observed that melanotic capsules enclosing Plasmodium berghei ookinetes were composed of an acid-resistant and highly hydrophobic material with granular appearance, which are characteristic properties of melanins. Spectroscopical analyses reveal chemical signatures of eumelanins and pheomelanin. Furthermore, we identified a set of 14 acid-resistant mosquito proteins embedded within the melanin matrix possibly related to an anti- Plasmodium response. Among these, Ag MESH, a mucin-related protein highly conserved among insects that is associated with the midgut brush border microvilli proteome of Anopheles gambiae and A. albimanus. AgMESH gene silencing in mosquitos was associated with reduced Plasmodium parasite infection, compromised integrity of the peritrophic matrix, and inability to synthesize a dityrosine network. Our results provide a new approach to study aspects of insect melanogenesis that revealed proteins associated with melanotic capsule, one of which was strongly implicated in the stabilization of the peritrophic matrix and pathogenesis of Plasmodium spp. mosquito infection. Given the conservation of Ag MESH among disease-transmitting insect vector species, future analysis of this protein could provide fertile ground for the identification of strategies that block transmission of vector borne diseases to humans. Significance Statement Malaria is a parasitic disease transmitted by mosquito bites. Here, we adapt methodologies to study fungal melanogenesis to explore the melanin-based immune response of Anopheles gambiae against malaria parasites. We reveal that melanotic capsules against Plasmodium are composed of pheomelanin and eumelanin. We demonstrate that melanin-encapsulated Plasmodium is associated to acid-resistant mosquito gut proteins and identify several putative factors of the melanin-mediated immunity. Disruption of Ag MESH, a surface-associated protein conserved among other mosquito vectors, demonstrates its ability to impaired formation of the dityrosine network and peritrophic matrix compromising parasite development within the mosquito gut. Our study provides a new approach to investigate the melanin-based defense mechanism in insects and identified a potential host molecule for developing novel universal vector-control schemes.
9
Citation2
0
Save
Load More