FY
Fuquan Yang
Author with expertise in Ribosome Structure and Translation Mechanisms
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(67% Open Access)
Cited by:
4,030
h-index:
50
/
i10-index:
132
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Nitric Oxide and ProteinS-Nitrosylation Are Integral to Hydrogen Peroxide-Induced Leaf Cell Death in Rice

Aihong Lin et al.Nov 21, 2011
Abstract Nitric oxide (NO) is a key redox-active, small molecule involved in various aspects of plant growth and development. Here, we report the identification of an NO accumulation mutant, nitric oxide excess1 (noe1), in rice (Oryza sativa), the isolation of the corresponding gene, and the analysis of its role in NO-mediated leaf cell death. Map-based cloning revealed that NOE1 encoded a rice catalase, OsCATC. Furthermore, noe1 resulted in an increase of hydrogen peroxide (H2O2) in the leaves, which consequently promoted NO production via the activation of nitrate reductase. The removal of excess NO reduced cell death in both leaves and suspension cultures derived from noe1 plants, implicating NO as an important endogenous mediator of H2O2-induced leaf cell death. Reduction of intracellular S-nitrosothiol (SNO) levels, generated by overexpression of rice S-nitrosoglutathione reductase gene (GSNOR1), which regulates global levels of protein S-nitrosylation, alleviated leaf cell death in noe1 plants. Thus, S-nitrosylation was also involved in light-dependent leaf cell death in noe1. Utilizing the biotin-switch assay, nanoliquid chromatography, and tandem mass spectrometry, S-nitrosylated proteins were identified in both wild-type and noe1 plants. NO targets identified only in noe1 plants included glyceraldehyde 3-phosphate dehydrogenase and thioredoxin, which have been reported to be involved in S-nitrosylation-regulated cell death in animals. Collectively, our data suggest that both NO and SNOs are important mediators in the process of H2O2-induced leaf cell death in rice.
0

Structural and functional characterization of the bacterial Cap3 enzyme in deconjugation and regulation of the cyclic dinucleotide transferase CD-NTase

Fangjian Li et al.Jun 1, 2024
The Cyclic GMP-AMP synthase (cGAS) and cGAS/DncV-like nucleotidyltransferase (CD-NTase) enzymes belong to the key components of the innate immune sensor system that generates cyclic dinucleotide molecules in response to danger signals. Recently, it was discovered that CD-NTase in bacteria can undergo conjugation to protein substrates via an E1/E2 enzyme-mediated process, resembling ubiquitin modification system. Subsequently, these CD-NTase conjugated molecules will be hydrolyzed by the Cap3 enzyme in the same gene cluster. However, the experimental structure of bacterial CD-NTase recognized by Cap3 is unknown. Here, we first determined the crystal structure of the Cap3 enzyme in complex with the C-terminal tail of CD-NTase. Our structural and enzymatic analysis revealed that the C-terminal tail of CD-NTase is both necessary and sufficient for the Cap3-mediated hydrolysis of CD-NTase from its substrates. Interestingly, we further observed that after the hydrolysis reaction, the terminal glycine residue of the CD-NTase C-terminal tail was sequentially removed by Cap3, indicating that Cap3 might play a role in quenching the CD-NTase conjugation reaction. Our work provides experimental evidence elucidating the interaction between Cap3 and CD-NTase, and suggests a potential role for Cap3 in the bacterial Cyclic-oligonucleotide-based anti-phage signaling system (CBASS).
Load More