SH
Steven Hebert
Author with expertise in Mineral Metabolism in Chronic Kidney Disease
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(80% Open Access)
Cited by:
5,568
h-index:
72
/
i10-index:
163
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Molecular Cloning and Functional Expression of Human Parathyroid Calcium Receptor cDNAs

James Garrett et al.May 1, 1995
Parathyroid cells express a cell surface receptor, coupled to the mobilization of intracellular Ca2+, that is activated by increases in the concentration of extracellular Ca2+ and by a variety of other cations. This “Ca2+ receptor” (CaR) serves as the primary physiological regulator of parathyroid hormone secretion. Alterations in the CaR have been proposed to underlie the increases in Ca2+ set-point seen in primary hyperparathyroidism due to parathyroid adenoma. We have isolated human CaR cDNAs from an adenomatous parathyroid gland. The cloned receptor, expressed in Xenopus oocytes, responds to extracellular application of physiologically relevant concentrations of Ca2+ and other CaR agonists. The rank order of potency of CaR agonists displayed by the native receptor (Gd3+ > neomycin B > Ca2+ > Mg2+) is maintained by the expressed receptor. The nucleotide sequence of the human CaR cDNA predicts a protein of 1078 amino acids with high sequence similarity to a bovine CaR, and displays seven putative membrane-spanning regions common to G protein-coupled receptors. The deduced protein sequence shows potential sites for N-linked glycosylation and phosphorylation by protein kinase C and has a low level of sequence similarity to the metabotropic glutamate receptors. Comparison of the cDNA sequence to that of the normal human CaR gene showed no alteration in the coding region sequence of the CaR in this particular instance of parathyroid adenoma. Human cDNA clones with differing 5′-untranslated regions were isolated, suggesting alternative splicing of the parathyroid CaR mRNA. A rare variant cDNA clone representing a 10 amino acid insertion into the extracellular domain was also isolated. Northern blot analysis of normal and adenomatous parathyroid gland mRNA identified a predominant transcript of ∼5.4 kilobases, and less abundant transcripts of ∼10, 4.8 and 4.2 kilobases in RNA from the adenoma. While there is no evidence for alteration of the primary amino acid sequence of the CaR in this adenoma, modulation of CaR biosynthesis through alternative RNA processing may play a role in set-point alterations. Parathyroid cells express a cell surface receptor, coupled to the mobilization of intracellular Ca2+, that is activated by increases in the concentration of extracellular Ca2+ and by a variety of other cations. This “Ca2+ receptor” (CaR) serves as the primary physiological regulator of parathyroid hormone secretion. Alterations in the CaR have been proposed to underlie the increases in Ca2+ set-point seen in primary hyperparathyroidism due to parathyroid adenoma. We have isolated human CaR cDNAs from an adenomatous parathyroid gland. The cloned receptor, expressed in Xenopus oocytes, responds to extracellular application of physiologically relevant concentrations of Ca2+ and other CaR agonists. The rank order of potency of CaR agonists displayed by the native receptor (Gd3+ > neomycin B > Ca2+ > Mg2+) is maintained by the expressed receptor. The nucleotide sequence of the human CaR cDNA predicts a protein of 1078 amino acids with high sequence similarity to a bovine CaR, and displays seven putative membrane-spanning regions common to G protein-coupled receptors. The deduced protein sequence shows potential sites for N-linked glycosylation and phosphorylation by protein kinase C and has a low level of sequence similarity to the metabotropic glutamate receptors. Comparison of the cDNA sequence to that of the normal human CaR gene showed no alteration in the coding region sequence of the CaR in this particular instance of parathyroid adenoma. Human cDNA clones with differing 5′-untranslated regions were isolated, suggesting alternative splicing of the parathyroid CaR mRNA. A rare variant cDNA clone representing a 10 amino acid insertion into the extracellular domain was also isolated. Northern blot analysis of normal and adenomatous parathyroid gland mRNA identified a predominant transcript of ∼5.4 kilobases, and less abundant transcripts of ∼10, 4.8 and 4.2 kilobases in RNA from the adenoma. While there is no evidence for alteration of the primary amino acid sequence of the CaR in this adenoma, modulation of CaR biosynthesis through alternative RNA processing may play a role in set-point alterations.
0

Reduced immunostaining for the extracellular Ca2+-sensing receptor in primary and uremic secondary hyperparathyroidism.

Olga Kifor et al.Apr 1, 1996
Most parathyroid adenomas and some pathological parathyroid glands from patients with primary parathyroid hyperplasia or severe uremic secondary/tertiary hyperparathyroidism show an elevated set-point [the extracellular Ca2+ concentration (Ca2+o) half-maximally inhibiting PTH secretion]. In the present study, we investigated whether expression of the Ca2+o-sensing receptor protein recently cloned from bovine parathyroid, a key component in Ca2+o-regulated PTH release, is altered in primary and uremic hyperparathyroidism. Using immunohistochemistry with specific antireceptor antibodies, we compared immunoreactivity of the receptor protein in 14 adenomas, biopsies of 24 normal glands from this same group of patients, and 8 hyperplastic parathyroid glands from 2 individuals with uremic hyperparathyroidism. The results show a substantial reduction in the intensity of immunostaining for the receptor protein that averaged nearly 60% for both adenomas and hyperplastic glands, as quantitated by image analysis. Although normal glands from normocalcemic controls were not available, the intensity of receptor staining in normal glands from patients with adenomas was comparable to that in normal bovine, rat, and mouse parathyroid glands. There was considerable variation in staining intensity among different pathological parathyroid glands, even in those from the same patient with secondary hyperparathyroidism. In addition, both adenomas and hyperplastic glands had, in some cases, isolated chief cells and groups of cells, sometimes around the periphery of an abnormal gland, with receptor staining equivalent to that of normal parathyroid cells, whereas the bulk of the cells in the same gland showed a marked decrease in staining. Thus, there is a variable, but substantial, reduction in the immunoreactivity of the Ca2+o-sensing receptor protein in both parathyroid adenomas and uremic hyperparathyroidism, as assessed by immunohistochemistry, that probably results from reduced expression of the receptor protein and may contribute to the increase in the set-point often observed in these patients.
0
Citation474
0
Save
0

Genetic Ancestry and Natural Selection Drive Population Differences in Immune Responses to Pathogens

Yohann Nédélec et al.Oct 1, 2016

Summary

 Individuals from different populations vary considerably in their susceptibility to immune-related diseases. To understand how genetic variation and natural selection contribute to these differences, we tested for the effects of African versus European ancestry on the transcriptional response of primary macrophages to live bacterial pathogens. A total of 9.3% of macrophage-expressed genes show ancestry-associated differences in the gene regulatory response to infection, and African ancestry specifically predicts a stronger inflammatory response and reduced intracellular bacterial growth. A large proportion of these differences are under genetic control: for 804 genes, more than 75% of ancestry effects on the immune response can be explained by a single cis- or trans-acting expression quantitative trait locus (eQTL). Finally, we show that genetic effects on the immune response are strongly enriched for recent, population-specific signatures of adaptation. Together, our results demonstrate how historical selective events continue to shape human phenotypic diversity today, including for traits that are key to controlling infection.
0
Citation473
0
Save
0

Cloning and functional expression of a rat kidney extracellular calcium/polyvalent cation-sensing receptor.

Daniela Riccardi et al.Jan 3, 1995
The maintenance of a stable extracellular concentration of ionized calcium depends on the integrated function of a number of specialized cells (e.g., parathyroid and certain kidney epithelial cells). We recently identified another G protein-coupled receptor (BoPCaRI) from bovine parathyroid that responds to changes in extracellular Ca2+ within the millimolar range and provides a key mechanism for regulating the secretion of parathyroid hormone. Using an homology-based strategy, we now report the isolation of a cDNA encoding an extracellular Ca2+/polyvalent cation-sensing receptor (RaKCaR) from rat kidney. The predicted RaKCaR protein shares 92% identity with BoPCaR1 receptor and features a seven membrane-spanning domain, characteristic of the G protein-coupled receptors, which is preceded by a large hydrophilic extracellular NH2 terminus believed to be involved in cation binding. RaKCaR cRNA-injected Xenopus oocytes responded to extracellular Ca2+, Mg2+, Gd3+, and neomycin with characteristic activation of inositol phospholipid-dependent, intracellular Ca(2+)-induced Cl- currents. In rat kidney, Northern analysis revealed RaKCaR transcripts of 4 and 7 kb, and in situ hybridization showed localization primarily in outer medulla and cortical medullary rays. Our results provide important insights into the molecular structure of an extracellular Ca2+/polyvalent cation-sensing receptor in rat kidney and provide another basis on which to understand the role of extracellular divalent cations in regulating kidney function in mineral metabolism.
0

Expression and Characterization of Inactivating and Activating Mutations in the Human Ca2+-sensing Receptor

Mei Bai et al.Aug 1, 1996
Nearly 30 mutations have been identified to date in the coding region of the extracellular calcium-sensing receptor (CaR) that are associated with inherited human hypo- and hypercalcemic disorders. To understand the mechanisms by which the mutations alter the function of the receptor may help to discern the structure-function relationships in terms of ligand-binding and G protein coupling. In the present studies, we transiently expressed eight known CaR mutations in HEK293 cells. The effects of the mutations on extracellular calcium- and gadolinium-elicited increases in the cytosolic calcium concentration were then examined. Seven inactivating mutations, which cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism, show a reduced functional activity of the receptor because they may 1) reduce its affinity for agonists; 2) prevent conversion of the receptor from a putatively immature, high mannose form into the fully glycosylated and biologically active form of the CaR, in addition to lowering its affinity for agonists; or 3) fail to couple the receptor to and/or activate its respective G protein(s). Conversely, one activating mutation, which causes a form of autosomal dominant hypocalcemia, appears to increase the affinity of the receptor for its agonists. Nearly 30 mutations have been identified to date in the coding region of the extracellular calcium-sensing receptor (CaR) that are associated with inherited human hypo- and hypercalcemic disorders. To understand the mechanisms by which the mutations alter the function of the receptor may help to discern the structure-function relationships in terms of ligand-binding and G protein coupling. In the present studies, we transiently expressed eight known CaR mutations in HEK293 cells. The effects of the mutations on extracellular calcium- and gadolinium-elicited increases in the cytosolic calcium concentration were then examined. Seven inactivating mutations, which cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism, show a reduced functional activity of the receptor because they may 1) reduce its affinity for agonists; 2) prevent conversion of the receptor from a putatively immature, high mannose form into the fully glycosylated and biologically active form of the CaR, in addition to lowering its affinity for agonists; or 3) fail to couple the receptor to and/or activate its respective G protein(s). Conversely, one activating mutation, which causes a form of autosomal dominant hypocalcemia, appears to increase the affinity of the receptor for its agonists.
0
Citation430
0
Save
0

Expression of the Na-K-2Cl cotransporter is developmentally regulated in postnatal rat brains: A possible mechanism underlying GABA's excitatory role in immature brain

Matthew Plotkin et al.Nov 20, 1997
Journal of NeurobiologyVolume 33, Issue 6 p. 781-795 Expression of the Na-K-2Cl cotransporter is developmentally regulated in postnatal rat brains: A possible mechanism underlying GABA's excitatory role in immature brain M. D. Plotkin, M. D. Plotkin Renal Division, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115Search for more papers by this authorE. Y. Snyder, E. Y. Snyder Departments of Neurology (Division of Neuroscience) and Pediatrics (Division of Newborn Medicine), Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115Search for more papers by this authorS. C. Hebert, S. C. Hebert Renal Division, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115Search for more papers by this authorE. Delpire, Corresponding Author E. Delpire Renal Division, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115Renal Division, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115Search for more papers by this author M. D. Plotkin, M. D. Plotkin Renal Division, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115Search for more papers by this authorE. Y. Snyder, E. Y. Snyder Departments of Neurology (Division of Neuroscience) and Pediatrics (Division of Newborn Medicine), Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115Search for more papers by this authorS. C. Hebert, S. C. Hebert Renal Division, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115Search for more papers by this authorE. Delpire, Corresponding Author E. Delpire Renal Division, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115Renal Division, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115Search for more papers by this author First published: 07 December 1998 https://doi.org/10.1002/(SICI)1097-4695(19971120)33:6<781::AID-NEU6>3.0.CO;2-5Citations: 315AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat Abstract An inhibitory neurotransmitter in mature brain, γ-aminobutyric acid (GABA) also appears to be excitatory early in development. The mechanisms underlying this shift are not well understood. In vitro studies have suggested that Na-K-Cl cotransport may have a role in modulating immature neuronal and oligodendrocyte responses to the neurotransmitter GABA. An in vivo developmental study would test this view. Therefore, we examined the expression of the BSC2 isoform of the Na-K-2Cl cotransporter in the postnatal developing rat brain. A comparison of sections from developing rat brains by in situ hybridization revealed a well-delineated temporal and spatial pattern of first increasing and then diminishing cotransporter expression. Na-K-2Cl mRNA expression in the cerebral cortex and hippocampus was highest in the first week of postnatal life and then diminished from postnatal day (PND) 14 to adult. Cotransporter signal in white-matter tracts of the cerebrum, cerebellum, peaked at PND 14. Expression was detected in cerebellar progenitor cells of the external granular layer, in internal granular layer cells at least as early as PND 7, and in Purkinje cells beginning at PND 14. Double-labeling immunofluorescence of brain sections with anti-BSC2 antibody and cell type-specific antibodies confirmed expression of the cotransporter gene product in neurons and oligodendrocytes in the white matter in a pattern similar to that determined by in situ hybridization. The temporal pattern of expression of the Na-K-2Cl cotransporter in the postnatal rat brain supports the hypothesis that the cotransporter is the mechanism of intracellular Cl− accumulation in immature neurons and oligodendrocytes. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 781–795, 1997 Citing Literature Volume33, Issue620 November 1997Pages 781-795 RelatedInformation
0

Molecular pathogenesis of inherited hypertension with hyperkalemia: The Na–Cl cotransporter is inhibited by wild-type but not mutant WNK4

Frederick Wilson et al.Jan 6, 2003
Mutations in the serine-threonine kinases WNK1 and WNK4 [with no lysine (K) at a key catalytic residue] cause pseudohypoaldosteronism type II (PHAII), a Mendelian disease featuring hypertension, hyperkalemia, hyperchloremia, and metabolic acidosis. Both kinases are expressed in the distal nephron, although the regulators and targets of WNK signaling cascades are unknown. The Cl(-) dependence of PHAII phenotypes, their sensitivity to thiazide diuretics, and the observation that they constitute a "mirror image" of the phenotypes resulting from loss of function mutations in the thiazide-sensitive Na-Cl cotransporter (NCCT) suggest that PHAII may result from increased NCCT activity due to altered WNK signaling. To address this possibility, we measured NCCT-mediated Na(+) influx and membrane expression in the presence of wild-type and mutant WNK4 by heterologous expression in Xenopus oocytes. Wild-type WNK4 inhibits NCCT-mediated Na-influx by reducing membrane expression of the cotransporter ((22)Na-influx reduced 50%, P < 1 x 10(-9), surface expression reduced 75%, P < 1 x 10(-14) in the presence of WNK4). This inhibition depends on WNK4 kinase activity, because missense mutations that abrogate kinase function prevent this effect. PHAII-causing missense mutations, which are remote from the kinase domain, also prevent inhibition of NCCT activity, providing insight into the pathophysiology of the disorder. The specificity of this effect is indicated by the finding that WNK4 and the carboxyl terminus of NCCT coimmunoprecipitate when expressed in HEK 293T cells. Together, these findings demonstrate that WNK4 negatively regulates surface expression of NCCT and implicate loss of this regulation in the molecular pathogenesis of an inherited form of hypertension.
0

Primary structure and functional expression of a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter.

Gerardo Gamba et al.Apr 1, 1993
Electroneutral Na+:Cl- cotransport systems are involved in a number of important physiological processes including salt absorption and secretion by epithelia and cell volume regulation. One group of Na+:Cl- cotransporters is specifically inhibited by the benzothiadiazine (thiazide) class of diuretic agents and can be distinguished from Na+:K+:2Cl- cotransporters based on a lack of K+ requirement and insensitivity to sulfamoylbenzoic acid diruetics like bumetanide. We report here the isolation of a cDNA encoding a thiazide-sensitive, electroneutral sodium-chloride cotransporter from the winter flounder urinary bladder using an expression cloning strategy. The pharmacological and kinetic characteristics of the cloned cotransporter are consistent with the properties of native thiazide-sensitive sodium-chloride cotransporters in teleost urinary bladder and mammalian renal distal tubule epithelia. The nucleotide sequence predicts a protein of 1023 amino acids (112 kDa) with 12 putative membrane-spanning regions, which is not related to other previously cloned sodium or chloride transporters. Northern hybridization shows two different gene products: a 3.7-kb mRNA localized only to the urinary bladder and a 3.0-kb mRNA present in several non-bladder/kidney tissues.
Load More