LA
Lorena Ancona
Author with expertise in Population Genetic Structure and Dynamics
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
2
h-index:
2
/
i10-index:
0
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Selection-driven adaptation to the extreme Antarctic environment in the Emperor penguin

Federica Pirri et al.Dec 15, 2021
Abstract The eco-evolutionary history of penguins is profoundly influenced by their shift from temperate to cold environments. Breeding only in Antarctica during the winter, the Emperor penguin appears as an extreme outcome of this process, with unique features related to insulation, heat production and energy management. However, whether this species actually diverged from a less cold-adapted ancestor, thus more similar in ecology to its sister species, the King penguin, is still an open question. As the Antarctic niche shift likely resulted in vast changes in selective pressure experienced by the Emperor penguin, the identification and relative quantification of the genomic signatures of selection, unique to each of these sister species, could answer this question. Applying a suite of phylogeny-based methods on 7,651 orthologous gene alignments of seven penguins and 13 other birds, we identified a set of candidate genes showing significantly different selection regimes either in the Emperor or in the King penguin lineage. Our comparative approach unveils a more pervasive selection shift in the Emperor penguin, supporting the hypothesis that its extreme cold adaptation is a derived state from a more King penguin-like ecology. Among the candidate genes under selection in the Emperor penguin, four genes (TRPM8, LEPR, CRB1, and SFI1) were identified before in other cold adapted vertebrates, while, on the other hand, 161 genes can be assigned to functional pathways relevant to cold adaptation (e.g., cardiovascular system, lipid, fatty acid and glucose metabolism, insulation, etc.). Our results show that extreme cold adaptation in the Emperor penguin largely involved unique genetic options which, however, affect metabolic and physiological traits common to other cold-adapted homeotherms.
1
Citation2
0
Save
1

Gene expression is the main driver of purifying selection in large penguin populations

Emiliano Trucchi et al.Aug 8, 2023
Abstract Purifying selection is the most pervasive type of selection, as it constantly removes deleterious mutations arising in populations, directly scaling with population size. Highly expressed genes appear to accumulate fewer deleterious mutations between divergent species’ lineages, pointing towards gene expression as an additional driver of purifying selection. However, estimates of the effect of gene expression on segregating deleterious variants in natural populations are lacking, as well as an understanding of the relative contribution of population size and gene expression to overall purifying selection pressure. Here, we analyse genomic and transcriptomic data from two natural populations of closely related sister species with different demographic histories, the Emperor ( Aptenodytes forsteri ) and the King penguins ( A. patagonicus), and demonstrate that purifying selection at the population-level depends on the level of gene expression, with larger effects than population size. Deleterious segregating variants spread less in the population when they are in genes with higher expression rate. Leveraging realistic forward simulations, we estimate that the top 10% of the most highly expressed genes in a genome experience a selection pressure corresponding to an average selection coefficient of −0.1, which decreases to a selection coefficient of −0.01 for the top 50%. Gene expression appears to be a fundamental driver of purifying selection in natural populations, also effective at small population size. We suggest gene expression could be used as a proxy for gene selection coefficients ( i.e. , distribution of fitness effects), which are notoriously difficult to derive in non-model species under real-world conditions.