PL
Pengyun Luo
Author with expertise in Glycosylation in Health and Disease
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
1
(100% Open Access)
Cited by:
0
h-index:
1
/
i10-index:
0
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Single-molecule analysis unveils the phosphorylation of FLS2 regulates its spatiotemporal dynamics and immunity

Yaning Cui et al.Aug 22, 2023
Summary Phosphorylation of receptor-like kinases (RLKs) plays an important role in the regulation of pattern-triggered immunity (PTI). Arabidopsis thaliana FLAGELLIN-SENSITIVE2 (FLS2) is a typical RLK that can sense a conserved 22 amino acid sequence in the N-terminal region of flagellin (flg22) to initiate plant defense pathways. However, the mechanisms underlying the regulation of FLS2 phosphorylation activity at the plasma membrane in response to flg22 remain largely enigmatic. Here, by single-particle tracking, we demonstrated that Ser-938 phosphorylation site affected flg22-induced FLS2 spatiotemporal dynamics and dwell time. Furthermore, using Förster resonance energy transfer-fluorescence lifetime (FRET-FLIM) imaging microscopy coupled with protein proximity indexes (PPI), we revealed that the degree of co-localization of FLS2/FLS2 S938D -GFP with AtRem1.3-mCherry increased in response to flg22, whereas FLS2 S938A -GFP did not show significant changes, indicating that Ser-938 phosphorylation site facilitates efficient sorting of FLS2 into nanodomains. Importantly, we found that the Ser-938 phosphorylation of FLS2 significantly increased flg22-induced internalization and immune responses. Taken together, these results illustrate that the phosphorylated site of FLS2 regulates the partitioning of FLS2 into functional membrane nanodomains to activate flg22-induced plant immunity.
0

The actin cytoskeleton regulates danger-associated molecular pattern signaling and PEP1 RECEPTOR1 internalization

Hongping Qian et al.Jan 17, 2025
In plants, cytoskeletal proteins assemble into dynamic polymers that play numerous roles in diverse fundamental cellular processes, including endocytosis, vesicle trafficking, and the spatial distribution of organelles and protein complexes. Plant elicitor peptides (Peps) are damage/danger-associated molecular patterns (DAMPs) that are perceived by the receptor-like kinases PEP RECEPTOR 1 (PEPR1) and PEPR2 to enhance innate immunity and inhibit root growth in Arabidopsis (Arabidopsis thaliana). To date, however, there is little evidence that the actin cytoskeleton of the host cell participates in DAMP-induced innate immunity. Here, we demonstrated that the actin cytoskeleton alters the Pep1-triggered immune response. In addition, dual-color total internal reflection fluorescence-structured illumination microscopy (TIRF-SIM) showed that PEPR1 diffusion on the plasma membrane is closely related to the actin cytoskeleton. We performed single-particle tracking to quantify individual protein particles and found that the actin cytoskeleton notably regulates PEPR1 mobility and cluster size. More importantly, we demonstrated that actin filament reconfiguration is sufficient to inhibit Pep1-induced internalization, which alters the immune response. Taken together, these findings suggest that the actin cytoskeleton functions as an integration node for Pep1 signaling and PEPR1 endocytosis.