YL
Yiqi Luo
Author with expertise in Soil Carbon Dynamics and Nutrient Cycling in Ecosystems
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
35
(51% Open Access)
Cited by:
11,323
h-index:
88
/
i10-index:
241
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Divergence of reproductive phenology under climate warming

Rebecca Sherry et al.Dec 21, 2006
Because the flowering and fruiting phenology of plants is sensitive to environmental cues such as temperature and moisture, climate change is likely to alter community-level patterns of reproductive phenology. Here we report a previously unreported phenomenon: experimental warming advanced flowering and fruiting phenology for species that began to flower before the peak of summer heat but delayed reproduction in species that started flowering after the peak temperature in a tallgrass prairie in North America. The warming-induced divergence of flowering and fruiting toward the two ends of the growing season resulted in a gap in the staggered progression of flowering and fruiting in the community during the middle of the season. A double precipitation treatment did not significantly affect flowering and fruiting phenology. Variation among species in the direction and magnitude of their response to warming caused compression and expansion of the reproductive periods of different species, changed the amount of overlap between the reproductive phases, and created possibilities for an altered selective environment to reshape communities in a future warmed world.
0
Paper
Citation609
0
Save
0

Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis

Siyang Jian et al.Jul 8, 2016
Nitrogen (N) fertilization affects the rate of soil organic carbon (SOC) decomposition by regulating extracellular enzyme activities (EEA). Extracellular enzymes have not been represented in global biogeochemical models. Understanding the relationships among EEA and SOC, soil N (TN), and soil microbial biomass carbon (MBC) under N fertilization would enable modeling of the influence of EEA on SOC decomposition. Based on 65 published studies, we synthesized the activities of α-1,4-glucosidase (AG), β-1,4-glucosidase (BG), β-d-cellobiosidase (CBH), β-1,4-xylosidase (BX), β-1,4-N-acetyl-glucosaminidase (NAG), leucine amino peptidase (LAP), urease (UREA), acid phosphatase (AP), phenol oxidase (PHO), and peroxidase (PEO) in response to N fertilization. The proxy variables for hydrolytic C acquisition enzymes (C-acq), N acquisition (N-acq), and oxidative decomposition (OX) were calculated as the sum of AG, BG, CBH and BX; AG and LAP; PHO and PEO, respectively. The relationships between response ratios (RRs) of EEA and SOC, TN, or MBC were explored when they were reported simultaneously. Results showed that N fertilization significantly increased CBH, C-acq, AP, BX, BG, AG, and UREA activities by 6.4, 9.1, 10.6, 11.0, 11.2, 12.0, and 18.6%, but decreased PEO, OX and PHO by 6.1, 7.9 and 11.1%, respectively. N fertilization enhanced SOC and TN by 7.6% and 15.3%, respectively, but inhibited MBC by 9.5%. Significant positive correlations were found only between the RRs of C-acq and MBC, suggesting that changes in combined hydrolase activities might act as a proxy for MBC under N fertilization. In contrast with other variables, the RRs of AP, MBC, and TN showed unidirectional trends under different edaphic, environmental, and physiological conditions. Our results provide the first comprehensive set of evidence of how hydrolase and oxidase activities respond to N fertilization in various ecosystems. Future large-scale model projections could incorporate the observed relationship between hydrolases and microbial biomass as a proxy for C acquisition under global N enrichment scenarios in different ecosystems.
0
Paper
Citation554
0
Save
0

Simulating the impacts of disturbances on forest carbon cycling in North America: Processes, data, models, and challenges

Shuguang Liu et al.Aug 18, 2011
Abstract [1] Forest disturbances greatly alter the carbon cycle at various spatial and temporal scales. It is critical to understand disturbance regimes and their impacts to better quantify regional and global carbon dynamics. This review of the status and major challenges in representing the impacts of disturbances in modeling the carbon dynamics across North America revealed some major advances and challenges. First, significant advances have been made in representation, scaling, and characterization of disturbances that should be included in regional modeling efforts. Second, there is a need to develop effective and comprehensive process-based procedures and algorithms to quantify the immediate and long-term impacts of disturbances on ecosystem succession, soils, microclimate, and cycles of carbon, water, and nutrients. Third, our capability to simulate the occurrences and severity of disturbances is very limited. Fourth, scaling issues have rarely been addressed in continental scale model applications. It is not fully understood which finer scale processes and properties need to be scaled to coarser spatial and temporal scales. Fifth, there are inadequate databases on disturbances at the continental scale to support the quantification of their effects on the carbon balance in North America. Finally, procedures are needed to quantify the uncertainty of model inputs, model parameters, and model structures, and thus to estimate their impacts on overall model uncertainty. Working together, the scientific community interested in disturbance and its impacts can identify the most uncertain issues surrounding the role of disturbance in the North American carbon budget and develop working hypotheses to reduce the uncertainty.
0
Paper
Citation455
0
Save
0

Toward more realistic projections of soil carbon dynamics by Earth system models

Yiqi Luo et al.Dec 19, 2015
Abstract Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real‐world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first‐order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth‐dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool‐ and flux‐based data sets through data assimilation is among the highest priorities for near‐term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.
0
Paper
Citation448
0
Save
0

Minor stimulation of soil carbon storage by nitrogen addition: A meta-analysis

Lei Meng et al.Dec 29, 2010
It is a well-established concept that nitrogen (N) limits plant growth and ecosystem production. However, whether N limits land carbon (C) sequestration – particularly in soil, the largest pool in the land – remains highly controversial. We conducted a meta-analysis to synthesize 257 studies published in the literature with 512 paired comparisons to quantify the changes of ecosystem C processes in response to N addition. Our results show that N addition significantly increased aboveground, belowground, and litter C pools by 35.7, 23.0, and 20.9%, respectively, across all the studies. Despite the substantial increases in C inputs from vegetation to soil system, N addition resulted in no significant change in C storage of both organic horizon and mineral soil in forests and grasslands, but a significant 3.5% increase in agricultural ecosystems, largely due to less contribution from aboveground production and increases in DOC and soil respiration. Thus, N stimulation of C storage primarily occurred in plant pools but little in soil pools. Moreover, N-induced change in soil C storage was positively related to changes in belowground production but not to those in aboveground growth. Our global synthesis also suggests that earth system models need to treat soil C inputs from aboveground and belowground sources differentially for soil C sequestration in response to N deposition and fertilization.
0
Paper
Citation431
0
Save
0

Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions

Zhongkui Luo et al.May 23, 2017
Abstract Soil organic carbon ( SOC ) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate ( r C , Mg C ha −1 yr −1 ). Among these variables, we found that the most influential variables on r C were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on r C , followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining r C . The direct correlation of r C with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa . These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process‐based SOC models.
0
Paper
Citation403
0
Save
Load More